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Abstract
The variation of species diversity over space and time has been widely recognised as a key challenge in ecology. However, measur-
ing species diversity over large areas might be difficult for logistic reasons related to both time and cost savings for sampling, as well 
as accessibility of remote ecosystems. In this paper, we present a new R package - rasterdiv - to calculate diversity indices based 
on remotely sensed data, by discussing the theory behind the developed algorithms. Obviously, measures of diversity from space 
should not be viewed as a replacement of in situ data on biological diversity, but they are rather complementary to existing data and 
approaches. In practice, they integrate available information of Earth surface properties, including aspects of functional (structural, 
biophysical and biochemical), taxonomic, phylogenetic and genetic diversity. Making use of the rasterdiv package can result 
useful in making multiple calculations based on reproducible open source algorithms, robustly rooted in Information Theory.

Keywords Biodiversity · Ecological informatics · Modelling · Remote sensing · Satellite imagery

Introduction

Back in 1872, Ludwig Eduard Boltzmann (Boltzmann 1872) 
introduced the first measure of entropy, later called marginal 
entropy and restructured by Claude Elwood Shannon under 
a mathematical theory umbrella (Shannon 1948). As such, it 
became one of the cornerstones of ecological theory and was 

adopted widely in ecological practice for measuring biodiver-
sity and its change. Concerning biological entropy, the varia-
tion of species diversity over space and time has been widely 
recognised as a key challenge in ecology and was associated 
with analytic geometric models focusing either on the spatial 
component of species dispersal (Palmer 2007; Gorelick 2008) 
or on environmental drivers (Kreft and Jetz 2007).

To address this issue, many spatio-statistical models have 
been proposed to model biological entropy using data from Elisa Thouverai and Matteo Marcantonio are equally contributed 

to the manuscript.
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ecological surveys (Bachl et al. 2019). However, the sta-
tistical clarity (sensu Dushoff et al. 2019) of such models 
strictly depends on a high in situ data uncertainty, which 
propagates through all inferential steps (Meyer et al. 2016; 
Rocchini et al. 2019). Furthermore, measuring species diver-
sity over wide areas might be difficult for logistic reasons 
related both to time and sampling costs (Chiarucci et al. 
2011; Hernandez-Stefanoni et al. 2012) and to theoretical 
and practical constraints, which are mainly related to two 
sources of uncertainty. The first is the uncertainty associated 
with the detectability and the determination of individual 
plants or animals species. The second is the one linked to 
different sampling strategies (McGlinn and Palmer 2009) 
or efforts (Rocchini et al. 2019) per area, or, in the worst 
case, to the impossibility of getting information about the 
real grain (sensu Scheiner et al. 2000) sampled (Hobohm 
2003). In the absence of such information, it becomes exces-
sively challenging to properly address the modifiable areal 
unit problem (MAUP), which in this case is the sensitivity 
of biodiversity to scale (Jelinski and Wu 1996). This is true, 
even though evidence exists for a chance to rely, in some 
instances, on expert knowledge to build straightforward and 
robust diversity maps worldwide (Hobohm et al. 2019).

Accordingly, algorithms based on remote sensing and spa-
tial ecology might help estimating the variation of biodiver-
sity over space and time (Skidmore et al. 2011; Schimel and 
Scheiner 2019) and represent a powerful first exploratory tool 
to detect the spatial variability across the landscape. The rela-
tionship between ecological processes (and functions) and the 
remotely sensed diversity can rely on the definition of niche 
proposed by Kroes (1977), and according to which a niche 
is the biotic structural and functional part of the ecosystem. 
Strictly speaking, such definition can be profitably used to 
measure spatial heterogeneity in ecosystems in order to convey 
information on their potential functions (Schneider et al. 2017).

From this point of view, the development of Free and 
Open Source algorithms to measure diversity from space 
would be beneficial to allow high robustness and reproduc-
ibility of the proposed approaches (Rocchini and Neteler 
2012). Furthermore, their intrinsic transparency, commu-
nity-vetoing options, sharing and rapid availability are also 
valuable additions and reasons to move to open source 
options. Among the different open source packages, the R 
software environment is certainly one of the most wide-
spread worldwide and different packages have been devoted 
to remote sensing for: (i) raster data management (raster 
package, Hijmans and van Etten 2020), (ii) remote sens-
ing data analysis (RStoolbox package, Leutner et al. 

2019), (iii) spectral species diversity (biodivMapR pack-
age, Féret and Boissieu 2020), (iv) sparse generalised dis-
similarity modelling based on remote sensing data (sgdm 
package, Leitao et al. 2012), (v) entropy-based local spatial 
association (ELSA package, Naimi et al. 2019), (vi) land-
scape metrics calculation (landscapemetrics package, 
Hesselbarth et al. 2019), to name just a few. Reader can also 
refer to https:// cran.r- proje ct. org/ web/ views/ Spati al. html for 
the CRAN Task View on analysis of spatial data.

However, currently no package provides a flow of func-
tions grounded on Information Theory related to abundance 
based measures, by further introducing distances and going 
back to Information Theory again by generalised entropy. 
In this paper, we introduce a new R package which pro-
vides such a functions’ throughput workflow. The aim of this 
manuscript is to encompass the theory behind the algorithms 
developed in the rasterdiv package (https:// CRAN.R- 
proje ct. org/ packa ge= raste rdiv), relying on the definition 
given by Gorelick (2011b):

Theory is neither mathematical nor abstract. Theory 
is the creative, inductive, and synthetic discipline of 
forming hypothesis [...]

Information theory

One of the mostly used metrics for measuring remotely 
sensed diversity is related to the entropy measurement firstly 
introduced by Shannon (Shannon 1948).

Given a sample area with N pixel values and pi relative 
abundances for every i ∈ {1,… ,N} , in decreasing order, the 
Shannon index is calculated as:

Taking into account only the most abundant pixel value, the 
Berger-Parker (Berger and Parker 1970) index is given by:

In remote sensing applications, the derivation of synthetic 
indices of any sort (i.e. diversity) is often performed by 
sequentially considering only small chunks of the whole 
image. These chunks are commonly defined as ’kernel’, 
’windows’ or ’moving windows’. From now on, we will use 
this terminology to indicate the local space of analysis.

Given an x integer matrix (or RasterLayer) which 
in R could be defined as: 

(1)H = −

N∑
i=1

pi ln pi

(2)IBP = p1

https://cran.r-project.org/web/views/Spatial.html
https://CRAN.R-project.org/package=rasterdiv
https://CRAN.R-project.org/package=rasterdiv
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Both indices can be calculated using rasterdiv by a 
moving window and applying the commands Shannon and 
BergerParker. 

 

 where window represents the side of the moving win-
dow. Additional arguments common to all functions in the 
package are: na.tolerance that determines the propor-
tion of NA values allowed in a moving window (default 
equals 1), np which sets the number of processes in the 
parallel computing environment defined with cluster.
type (default is “SOCK”).

Both indices obey to the relative abundance of values. The 
Berger-Parker index is equal to the relative proportion of the most 
abundant class in a moving window (Fig. 1). Hence, low values 
of Berger-Parker are expected for continuous satellite data, given 

the high variability of reflectance values. In contrast, in the Shan-
non index, the abundance of every single numerical category 
(pixel value) is taken into account. This might lead to taking into 
account the turnover among values, since the higher the turno-
ver the lower the dominance of a single class (Fig. 2). However, 
Shannon’s H is unable to discern situations where there is a high 
richness (number of numerical categories) and a low evenness 
from those where there is a low richness but a high evenness.

To better account for evenness, the Pielou index (Pielou 
1966) can be calculated by simply standardising the Shannon 
index on the maximum possible Shannon index attainable given 
the same richness value. The latter is attained when the maxi-
mum potential evenness of pixel values/numerical categories 
is reached, i.e. when they are equally distributed over space.

Hmax corresponds to the natural logarithm of the number of 
pixel values.

Using rasterdiv, the Pielou index can simply be cal-
culated as: 

Pielou(x, window=3)

Figure 3 reports an example with a moving window of 
9x9 pixels.

(3)E =
H

Hmax

Fig. 1  Berger-Parker index measuring the most abundant spectral 
value (Eq.  2). All the indices in this paper are calculated starting 
from a Copernicus Proba-V NDVI (Normalised Difference Vegetation 
Index, resampled at 8-bit radiometric resolution) long term average 
image (June 21st 1999–2017) at 5km grain, also provided into the 
rasterdiv package as a free default set which can be loaded by the 

function data(). A generally low value of the index (based on the 
most abundant spectral value) is found, since spectral input values are 
generally different from each other in a moving window. This figure 
has been generated by the command BergerParker(ndvi17_r,
window=9,np=8,cluster.type=“SOCK”) 
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Solving the non‑dimensionality 
of Shannon’s H′ : the Rao’s Q diversity index

Both Shannon’s H and Pielou’s E are dimensionless. 
In other words, they consider differences in the rela-
tive abundance among pixel values, but not their rela-
tive spectral distance, i.e. the distance among spec-
tral values. For instance, let A = (1, 2, 3, 4, 5, 6, 7, 8, 9) 
and B = (1, 102, 103, 104, 105, 106, 107, 108, 109) be two 

theoretical arrays of values. In both cases, values are differ-
ent from each other; hence, despite their relative numerical 
distance the Shannon index will always be maximum, i.e. 
H = In(9) = 2.197225 reducing E = H∕Hmax = 1.

In remotely sensed imagery, this is a crucial point since it 
might happen that contiguous zones could have similar (but 
not equal) reflectance values. For instance, the diversity of 
a homogeneous surface like water could be overestimated if 
spectral distances are not considered.

Fig. 2  Shannon index calculated on a Copernicus Proba-V NDVI 
image at 5  km. Shannon’s H is generally high since it only consid-
ers relative abundance of spectral values, which are generally differ-

ent from each other. This figure has been generated by the command 
Shannon(ndvi17_r,window=9,np=8,cluster.type= 
“SOCK”) 

Fig. 3  Pielou index calculated on a Copernicus Proba-V NDVI image 
at 5 km. A flattening effect with respect to Shannon’s H is found, due 
to the standardisation on the maximum possible Shannon entropy 

(see Eq.  3). This figure has been generated by the command Piel
ou(ndvi17_r,window=9,np=8,cluster.type=“SOCK”) 
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To overcome this issue, the Rao’s Quadratic diversity 
(hereafter Rao’s Q, Rao 1982) could be applied by not only 
taking into account relative abundance but also the spectral 
distance among different pixel values.

Given the values of different pixels i and j, the Rao’s Q 
consider their pairwise distance dij as:

Hence, an array with different but spectrally close values 
will lead to a high Shannon’s H but a low Rao’s Q. On the 
contrary, an array with different and distant values in the 
spectral space will lead to both a high Shannon’s H and a 
high Raos’ Q (Rao 1982).

Moving towards a 2D spatial extent, let M be a 2D matrix 

M =

⎛⎜⎜⎝

�1 �2 �3

�4 �5 �6

�7 �8 �9

⎞⎟⎟⎠
 formed by pixels with a certain reflectance 

value � in a single band for instance. For simplicity, let us 
consider an 8-bit band, i.e. containing 256 possible values 
(see also Rocchini et al. 2017). As a consequence, deriving 
Rao’s Q involves calculating a distance matrix Md for all the 
pixel values:

Thus, according to Eq. 4, Rao’s Q is related to the sum of all 
the pixel values pairwise distances, each of which is multi-
plied by the relative abundance of each pair of pixels in the 
analysed image d × (1∕N2) . In other words, Rao’s Q is the 
expected difference in reflectance values between two pixels 
drawn randomly with replacement from the evaluated set of 
pixels. The distance matrix can be built in several dimen-
sions (layers), thus allowing to consider more than one band 
at a time. As a consequence, Rao’s Q can be calculated in a 
multidimensional (multi-layers) system.

In rasterdiv package Rao’s Q is calculated as: 

Rao(x, dist m="euclidean", window=3, mode="classic")

The dist_m argument refers to the type of distance cal-
culated among pixels and can be any distance available in 
the R package proxy, such as Euclidean, Manhattan or 
Canberra distance. The Euclidean distance is the only pos-
sible with unidimensional datasets (mode=”classic“) 
(Fig.  4) as it is demonstrated that in one dimension 

(4)Q =

N∑
i=1

N∑
j=1

dij × pi × pj

(5)Md =

⎛
⎜⎜⎜⎜⎜⎝

d
�1,�1

d
�1,�2

d
�1,�3

⋯ d
�1,�n

d
�2,�1

d
�2,�2

d
�2,�3

⋯ d
�2,�n

d
�3,�1

d
�3,�2

d
�3,�3

⋯ d
�3,�n

⋮ ⋮ ⋮ ⋱ ⋮

d
�n,�1

d
�n,�2

d
�n,�3

⋯ d
�n,�n

⎞⎟⎟⎟⎟⎟⎠

DM ∶ (x, y) ↦
∑�xi − yi� = DE ∶ (x, y) ↦

√∑
(xi − yi)

2  , 
where DM and DE are the Manhattan and the Euclidean dis-
tances, respectively. In a similar way, the Canberra distance 
is derived from the Manhattan distance by standardising 
separately the absolute differences of each band with the 
sum of both values, and thus will also equal DE in one 
d imens ion ,  such  t ha t :  DC ∶ (x, y) ↦

∑ �xi − yi�
�xi� + �yi�

=DE ∶ (x, y) ↦
√∑

(xi − yi)
2.

Solving the intrinsic continuity of spectral 
data: cumulative residual entropy

As previously stated, spectral data are continuous vari-
ables that are approximate to discrete (the so called “digi-
tal number”) for practical reasons. As such, the fact that 
two different pixels should be counted or not in a category 
depends from the whim of the normalisation of the signal 
when Digital Numbers (DNs) are generated. Shannon index 
is built strictly for a non-ordered finite set of categories. 
For continuous variables, a derivative version of Shannon 
index was proposed, but soon it was clear that it had very 
different properties than categorical formulation (Jumarie 
1990; Michalowicz et al. 2013). Rao et al. (2004) proposed 
a Cumulative Residual Entropy (CRE) to build a consistent 
Shannon-like index for continuous variables. It is based on 
residual cumulative probability ( P(X >= xi) ), which can be 
estimated in a robust manner from empirical mono-dimen-
sional distributions by counting for each value the number 
of observations with equal or larger values and then dividing 
by the total. CRE is defined as follows:

and to estimate it from an empirical distribution, the follow-
ing approach is advised:

where X is the sorted vector of N observations. In practice, 
the approach is similar to the Rao’s Q, given that a coef-
ficient d, representing the disparity of the observations, is 
used to weight the diversity estimate based on probability. 
The difference resides in that the disparity in this continuous 
measure is absolute, while in Rao’Q it is relative between 
two observations.

This difference makes more complex the generalisation 
to a multi-layer, where this time the unidimensional cumu-
lative residual probability is substituted with a multivariate 

(6)CRE = −�
inf

0

P(X ≥ x) logP(X ≥ x)dx

(7)
CRE = −

N∑
i=1

P(X ≥ xi) logP(X ≥ xi)dx

dx = (xi − xi−1)
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one. For instance, here is an example making use of three 
layers / bands:

The calculation of the cumulative residual probability 
Pcr(X, Y , Z) in an efficient way is based on: (i) calculating a 
contingency array with a certain dimension for each band, 
and then (ii) performing a reverse cumulative sum along 
each dimension as follows:

(8)

X = [x0, x1, ..., xN], Y = [y0, y1, ..., yN], Z = [z0, z1, ..., zN]

CRE = −

N∑
i=1

N∑
j=1

N∑
k=1

Pcr(X, Y , Z)i,j,k logPcr(X, Y , Z)i,j,kdxidyjdzk

dxi = (xi − xi−1)

Pcr(X, Y , Z)i,j,k = P(X ≥ xi; Y ≥ yj; Z ≥ zk)

(9)

∀ I, J,K ∈ [0, ...,N]

P(X, Y , Z)I,J,K = P(X = xI , Y = yJ , Z = zK)

Pcr(X|Y , Z)I,J,K =

I∑
i=0

P(X, Y , Z)(N−i),J,K

Pcr(X, Y|Z)I,J,K =

J∑
j=0

P(X|Y , Z)(I,(N−j),K

Pcr(X, Y , Z)I,J,K =

K∑
k=0

P(X, Y|Z)I,J,(N−k)

In rasterdiv Cumulative Residual Entropy can be cal-
culated as: 

CRE(x, window=3)

producing a map such as that achieved in Fig. 5.

Solving point descriptors of diversity: 
the Rényi and Hill generalised entropy

The metrics described above represent point descriptors of 
diversity, each of which is able to represent only a part of 
the whole diversity spectrum that can be attained. There is 
actually no single measure that could be adopted to represent 
all the different aspects of diversity with an intrinsic fallacy 
in considering a ‘true’ diversity (Gorelick 2011a).

Fig. 4  Rao’s Q index calculated on a Copernicus Proba-V NDVI 
image at 5  km. Differently from the original Shannon’s formula, 
Rao’s Q also considers the distance among different values by bet-
ter discriminating the queues of the diversity distribution from 
very low diversity (e.g. deserts and ice fields) to very high diver-

sity (e.g. upper highly complex mountain ranges). This figure 
has been generated by the command Rao(ndvi17_r,dist_
m=“euclidean”,window=9,np=8, cluster.
type=“SOCK”,na.tolerance=0.5) 
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Rényi (1970) firstly proposed a measure which is able to 
represent several diversity metrics in just one formula, by 
only changing one parameter ( � in the original version of his 
manuscript). Given a sample area with N pixel values and 
pi relative abundances for every i ∈ {1,… ,N} , the Rényi 
index is:

Changing the parameter � will lead to different indices start-
ing from the same formula (Hill 1973). As an example, when 
�=0, H0 = ln(N) where N=richness, namely the maximum 
possible Shannon index ( Hmax ). In practice, with � = 0 , all 
the spectral values equally contribute to the index, with-
out making use of their relative abundance. For � → 1 , the 
Rényi will equal Shannon H, according to the l’Hospital’s 
rule, while for � =2 the Rényi index will equal the ln(1/D) 
where D is the Simpson’s dominance (Simpson 1949). The 
theoretical curve relating the Rényi index and � is a negative 
exponential, i.e. it decays until flattening for higher values of 
� , where the weight of the most abundant spectral values is 
higher with small differences among the attained diversity 
maps (Ricotta et al. 2003a).

In rasterdiv the Rényi index is calculated as: 

Renyi(x, window=3, alpha=1)

where x and window are the input dataset and the mov-
ing window size, as in previous functions (Fig. 6). The 

(10)H
�
=

1

1 − �
× ln

N∑
i=1

p�
i

argument alpha ( � value in Eq. 10, default equals 1) can 
be a single integer, a vector (e.g. alpha=c(1,3)) or a 
sequence of integers (e.g. alpha=1:3).

Hill (1973) was the first ecologist applying the general-
ised entropy concept initially developed by Rényi (1970). In 
particular, since no particular formula would have a preemi-
nent advantage over the others (Hill 1973), the Hill’s gen-
eralised entropy N

�
 was based on the effective number of 

species of H
�
 , namely the number of species that would lead 

to H
�
 if they were equally abundant. In our case, the “spe-

cies concept” is translated to the “spectral values” concept. 
Hence, N

�
 is the effective number of spectral values that 

would give H
�
 as an output. N

�
 can thus be calculated as:

As for the Rényi generalised entropy, changing � will let the 
index transform in many other widely used indices, which 
are point descriptions of diversity, i.e. peculiar cases of the 
Hill’s generalised theory. Hence, for � = 0 , N0 = N , where 
N is the total number of spectral values in the window of 
analysis; for � = 1 , N1 = exp H; for � = 2 , N2 = 1∕S , where 
S is the Simpson’s index, and for � = ∞ , N∞ =

1

IBP
 , where 

IBP is the Berger-Parker index (Fig. 7). We refer to Ricotta 
et al. (2003a) and Ricotta et al. (2003b) for a concise review 
on the theoretical properties of the Rényi and the Hill’s gen-
eralised entropy, respectively. In rasterdiv, the Hill’s 
generalised entropy can be calculated as: 

(11)N
�
=

( N∑
i=1

p�
i

) 1

1−�

Fig. 5  Cumulative residual entropy calculated on a Copernicus Proba-V NDVI image at 5 km. This figure has been generated by the command 
CRE(ndvi17_r,window=9,np=8,cluster.type=“SOCK”,na.tolerance=0.5) 
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Hill(x, window=3, alpha=1)

We refer to Chao et al. (2016) for a complete overview of 
the Hill’s numbers application in ecology.

Discussion

In this paper, we provided a full description of the main 
functionalities of the new R package rasterdiv. The 
rasterdiv package provides an unprecedented suite of 
functions to calculate different indices for estimating diver-
sity from space and to perform a first exploration of poten-
tial biodiversity hotspots worldwide at a glance. Of course, 
measures of diversity from space should not be viewed as a 
replacement of in situ data on biological diversity, but they 
are rather complementary to existing data and approaches. 
In practice, they integrate available information of Earth sur-
face properties, including aspects of functional (structural, 
biophysical and biochemical), taxonomic, phylogenetic and 
genetic diversity (Laliberté et al. 2019).

Obviously, in most of the Information Theory based met-
rics, only one layer can be used, considering those indices 
related to relative abundance, apart from the Rao’s Q and the 
Cumulative Residual Entropy (CRE). In the Rao’s Q index, 
multidimensional systems can be used to calculate spectral 

distance (see also Nakamura et al. (2020) on the dimension-
ality of diversity), while in the CRE it is possible to calculate 
a multidimensional cumulative distribution to be used in the 
estimates (Drissi et al. 2008). In general, remotely sensed 
data are actually the approximation of more complex sys-
tems, which depends on the original radiometric and spec-
tral resolution. In ecological terms, such original spectral 
space formed by many bands is analogous to the Hutchin-
son’s hypervolume, in which a geometrical order is given to 
those variables shaping species’ niches (Hutchinson 1959; 
Blonder 2018). In this case, the spectral space is expected to 
be related to both species niches and their relative diversity. 
The use of such spaces is an efficient approach to figure out 
the diversity of an area and potentially guide field sampling 
and monitoring schemes (Rocchini et al. 2008, 2018).

Concerning the data being used, spectral diversity meas-
ures computed from satellite images represent a valid alter-
native to class-based land cover maps for investigating land-
scapes heterogeneity (Rocchini et al. 2014). For instance, a 
highly fragmented landscape characterised by a mosaic of 
crops and seminatural forests suffers from oversimplifica-
tion when investigated through land cover classes (Amici 
et al. 2018), while it should present higher spectral diversity 
values compared to more homogeneous landscapes within 
the same study area (Rocchini and Ricotta 2007). Several 
studies have already acknowledged the importance of com-
puting continuous spectral diversity measures from spectral 
bands in order to better understand and discriminate the vari-
ous landscape components (Karlson et al. 2015; Godinho 

Fig. 6  Rényi index calculated on a Copernicus Proba-V NDVI image 
at 5 km, considering different � values, from 0 to 2. With � → 1 , the 
diversity map is equal to the Shannon’s map of Fig. 2. Increasing � 
will create a flattening of the index with a lower ability to discern dif-

ferences among different maps (Ricotta et al. 2003a). This figure has 
been generated by the command Renyi(ndvi17_r,window=9,
np=8,cluster.type=“SOCK”,alpha=c(0,0.5,1,2)) 
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et al. 2018; Ribeiro et al. 2019; Doxa et al. 2020). This said, 
caution is warranted when making use of continuous data, 
by seriously considering the radiometry of pixel values. 
As an example, relying on continuous NDVI (Normalised 
Difference Vegetation Index) values, ranging from −1 to 
1 with float (decimal) precision data, will lead to a high 
neighbouring diversity which could actually be the effect of 
data binning rather than of a biological underlying pattern. 
In general, an 8-bit image with a range of integer values/
classes from 0 to 255 would be preferable. In this paper, we 
made use of an 8-bit NDVI layer rescaled from Copernicus 
data. However, a multispectral system reduced to one single 
layer through the first component of a Principal Component 
Analysis, or similar multidimensionality reduction tech-
niques, would also be useful (Féret and Boissieu 2020). In 
fact, NDVI assumes a biomass-grounded reflectance model, 
while the direct use of the original spectral data (digital 
numbers) does not generally require any assumptions about 
the biology of objects being sensed.

As remotely sensed estimates of diversity are currently 
based on relatively long time series, they might allow a more 
general forecasting framework of future shifts in rates of 
diversity change. This is particularly important when aim-
ing at finding potential indicators of diversity change in time 
(Schmeller et al. 2018). On this point, it has been widely 
demonstrated that remotely sensed diversity might be in line 
with most of the spatially constrained Essential Biodiversity 
Variables proposed by Skidmore et al. (2015).

The rasterdiv package might also be particularly 
useful when aiming at calculating diversity directly from 

climate data, derived from remote sensing (Metz et al. 2014). 
This could allow analysing diversity based on the main driv-
ers of biological diversity in the field, rather than on the 
patterns resulting from pure spectral response. This is true 
when considering both wide climatic variations at global 
scale and microclimate variations at the scale of individu-
als (Zellweger et al. 2019). Due to unprecedented rates of 
climatic changes, the adaptation of species to climate change 
is a benchmark in ecology. Hence, estimating diversity from 
climate gridded data could improve our understanding of the 
variability of species ranges at different spatial and temporal 
scales (Senner et al. 2018).

Conclusion

Measuring diversity from above and delivering rapid and 
robust knowledge about diversity over wide regions could 
be of crucial importance for guiding management practices. 
From this point of view, the spatial variation of the spectral 
signal has an intrinsic cumbersome relation with the spatial 
autocorrelation (sensu Laliberté (2008)) of pixel values over 
space (and time, e.g. Rocchini et al. (2019)), which renders 
the proposed rasterdiv package a powerful tool to moni-
tor the variation of ecosystems properties over space and 
time, and thus their change (Rocchini et al. 2018).

As previously stated, no single measure provides a full 
description of all the different aspects of diversity. That is 
why, the rasterdiv package can result useful in mak-
ing multiple calculations based on reproducible open source 

Fig. 7  Another generalised entropy measure of diversity: the Hill 
index, for which the same reasoning of the Rényi index holds true. 
The maps are derived from a Copernicus Proba-V NDVI image at 

5  km. This figure has been generated by the command Hill(ndv
i17_r,window=9,np=8,cluster.type=“SOCK”,alph
a=c(0,0.5,1,2)) 
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algorithms, robustly rooted on Information Theory from 
which the different indices are extracted.      
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