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1  | INTRODUC TION

In the last decades, the number of studies in the field of re-
mote sensing of biodiversity has increased (Innes & Koch, 1998; 

Nagendra, 2001; Gillespie et al., 2008; Pettorelli et al., 2014; Turner, 
2014; Rocchini et al., 2016; Rocchini et al., 2021). This increase is 
accompanied by the development of a variety of approaches and 
methodologies to better assess multiple dimensions of biodiversity 
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Abstract
Question: Which optical traits, retrieved from biophysical models applied to Sentinel- 2 
images,	enable	an	estimation	of	tree	species	diversity	based	on	the	Spectral	Variation	
Hypothesis?
Location: Coniferous	mountain	forest	in	the	eastern	Italian	Alps.
Methods: We	 analyzed	 the	 PROSPECT-	5	 and	 Invertible	 Forest	 Reflectance	 Model	
(INFORM) biophysical parameters as retrieved from canopy reflectance data of different 
forest	plots	(using	Sentinel-	2	images	for	the	years	2017,	2018	and	2019)	as	optical	trait	
indicators	(OTIs).	We	successively	tested	the	Spectral	Variation	Hypothesis	(SVH)	for	each	
retrieved OTI using the Rao's Q as heterogeneity index, validating them against Shannon's 
H values calculated as a tree species diversity index derived from in- situ collected data.
Results: We demonstrated differences among OTIs in terms of how well their vari-
ations can be linked to species diversity. In particular the variations of brown pig-
ments (Cbrown), carotenoids (Car) and chlorophyll content (Cab) can be considered 
the	most	relevant	OTIs	for	the	application	of	the	SVH	when	using	the	Rao's	Q as a 
proxy for tree species diversity in our study site.
Conclusions: This research underlined that the OTIs contribute differently in the 
SVH	to	estimate	tree	species	diversity,	highlighting	significant	positive	correlations	
between tree species diversity and the spatial heterogeneity of the estimated pig-
ment content (Cab, Car, Cbrown).
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in	different	ecosystems	(Turner	et	al.,	2003;	Rocchini	et	al.,	2010;	
Lopes	et	al.,	2017).	Different	authors	indeed	focused	their	research	
on the assessment of alpha, beta and gamma diversity through the 
use of remote- sensing data, achieving interesting results in various 
ecosystems (Gillespie et al., 2008; Bergen et al., 2009; Rocchini 
et al., 2018, 2019; Torresani et al., 2019; Wang & Gamon, 2019; 
Féret	&	de	Boissieu,	2020;	Laliberté	et	al.,	2020).	Furthermore,	the	
availability of remote- sensing data acquired on various ecosystems, 
with increasing performances in terms of spectral/spatial/tempo-
ral characteristics, has opened new possibilities to explore com-
plex ecological processes and various dimensions of biodiversity 
(Pettorelli et al., 2014; Rocchini et al., 2016, 2018). The Spectral 
Variation	 Hypothesis	 (SVH)	 represents	 one	 of	 these	 approaches,	
and is gaining popularity (Palmer et al., 2002; Rocchini et al., 2010). It 
proposes that the pixel- to- pixel variability of the spectral response 
in a remotely sensed image is driven by multiple factors including 
environmental heterogeneity and diversity of leaf and canopy traits 
(biochemical and structural traits), in variable proportion depend-
ing on the scale of observation. Since these properties are related 
to species diversity, the textural variations are treated as a proxy 
of plant biodiversity (Rocchini et al., 2004). In other words, areas 
with	high	spectral	heterogeneity	 (SH)	 in	a	 remotely	sensed	 image	
correspond to areas with a high environmental heterogeneity with 
a higher number of available ecological niches that can host more 
species	 (Palmer	 et	 al.,	 2002).	 The	 SVH	has	 been	 tested	 in	 differ-
ent ecosystems including, to mention just a few, wetlands (Rocchini 
et al., 2004), prairie vegetation (Palmer et al., 2002), alpine forests 
(Torresani	et	al.,	2019),	grasslands	(Lopes	et	al.,	2017),	tropical	for-
ests	 (Féret	 &	 Asner,	 2014)	 and	 mediterranean	 vegetation	 (Levin	
et	al.,	2007).	Some	studies	proposed	to	test	the	spectral	variation	of	
single/multiple optical bands, others with vegetation indices com-
puted	from	multiple	bands	(e.g.	Normalized	Difference	Vegetation	
Index	 [NDVI];	 Madonsela	 et	 al.,	 2017;	 Torresani	 et	 al.,	 2019).	
Different	optical	data	have	been	used	to	test	the	SVH:	hyperspec-
tral	 data	 (Oldeland	et	 al.,	 2010;	 Féret	&	Asner,	 2014;	Gholizadeh	
et al., 2018; Draper et al., 2019), multispectral satellite images from 
MODIS	(Schmidtlein	&	Fassnacht,	2017),	Landsat	(Levin	et	al.,	2007;	
Rocchini,	2007),	Sentinel-	2	(Torresani	et	al.,	2018,	2019),	QuickBird	
(Hall	et	al.,	2010),	ASTER	(Levin	et	al.,	2007)	and	SPOT	(Lopes	et	al.,	
2017).	All	these	studies	showed	a	strong	sensor	dependency	of	the	
SVH	 resulting	 from	different	 spatial	 scales	 (spatial	 resolution	and	
image extent) and spectral scales (number of bands, radiometric 
resolution, bandwidth and spectral range covered; Rocchini et al., 
2010).	The	SVH	strongly	relies	on	the	time	of	acquisition	of	the	im-
ages	(season	of	the	year)	used	to	analyze	the	SH	(Torresani	et	al.,	
2019). Different studies using different images have indeed shown 
that	the	SH	changed	over	the	year	(Madonsela	et	al.,	2017;	Rocchini	
et al., 2019; Torresani et al., 2019). For this reason it appears partic-
ularly	relevant	to	test	the	SVH	with	images	acquired	over	different	
seasons to understand which is the season displaying optimal cor-
relation	between	SH	and	field	data.

The hypothesis also deeply depends on the index used to quan-
tify	SH.	Different	 indices	have	been	developed	 for	 this	purpose,	

each of which shows different strengths and pitfalls (Rocchini 
et	al.,	2010;	Gholizadeh	et	al.,	2018).	Recently,	the	Rao's	Q index 
(Rocchini	et	al.,	2017)	has	been	proposed	as	a	new	SH	measure	to	
be	applied	to	remote-	sensing	data.	An	interesting	property	of	this	
index is its capacity to account for both value and abundance of a 
group of pixels extracted from an image. Recently, this index has 
been tested as heterogeneity index with several data sets confirm-
ing its strengths and properties (Da Re et al., 2019; Torresani et al., 
2019, 2020).

We found different studies in the literature exploring the 
potential relationship between in- situ trait variability, spectral 
diversity,	 and	 different	 dimensions	 of	 biodiversity.	 Asner	 and	
Martin (2009) tested how trait variability and spectral variabil-
ity measured from airborne imaging spectroscopy changed with 
taxonomic	 diversity	 in	 tropical	 forest.	Durán	 et	 al.	 (2019)	made	
use of different methodologies combining foliar traits and hyper-
spectral data to assessed remotely sensed functional diversity 
in tropical forest across an elevation gradient. Schweiger et al. 
(2018) showed that the spectral diversity at the leaf level (de-
rived from leaf spectroscopy) is correlated to functional diver-
sity. They furthermore made use of a metric of spectral diversity 
that "describes the extent and filling pattern of the spectral space 
occupied by a plant community and thus its functional complexity" 
(Schweiger et al., 2018). To our best knowledge, very few recent 
studies explored this type of relationship with multispectral im-
ages (Rossi et al., 2020), but none of them in forest ecosystems. 
On the other hand, many studies have focused on understanding 
the relationship between the vegetation’s spectral response and 
various	biophysical	parameters	(Féret	et	al.,	2011;	Feilhauer	et	al.,	
2017;	Schweiger	et	al.,	2017).	These	biophysical	parameters	usu-
ally correspond to the main chemical traits driving the absorption 
at the leaf scale, such as leaf pigment content, water content and 
leaf mass per area.

One type of approach available for estimation of the vegetation’s 
biophysical properties based on spectral information is based on in-
version	of	radiative	transfer	models	(RTMs)	(Féret	et	al.,	2019).	These	
models aim to describe the physical interactions between incoming 
light and vegetation, including absorption and scattering. Their ver-
satility and strength depend on the vegetation and the ecosystem 
considered. The kind of remote- sensing data also influences the 
performance	of	 the	models	 (Verrelst	 et	 al.,	 2015).	Different	 kinds	
of optical data have been used to take advantage of the capacity of 
these models for the estimation of the biophysical parameters, in-
cluding hyperspectral and multispectral data (Navarro- Cerrillo et al., 
2014). In this regard, the Sentinel- 2 satellite, with its free and open 
data access policy, showed promising results for the estimation of 
different	biophysical	parameters	(Darvishzadeh	et	al.,	2019b,a;	Xie	
et	 al.,	 2019).	 RTMs	 require	 input	 parameterization,	 including	 leaf-		
and canopy- scale biophysical properties, as well as details on the 
illumination and observation geometries, and soil and atmospheric 
properties, in order to simulate leaf optical properties or canopy 
reflectance in the forward mode. One of the most frequently used 
models at the leaf level is the PROSPECT model (Jacquemoud & 
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Baret, 1990) that proved its suitability for a broad range of leaf types. 
PROSPECT simulates the directional- hemispherical reflectance 
and	transmittance	spectra	of	a	 leaf	over	the	range	400–	2,500	nm,	
based on a limited set of input variables, including the leaf struc-
ture parameter (N), leaf chlorophyll content (Cab), leaf carotenoid 
content (Car), brown pigments (Cbrown), equivalent water thickness 
(EWT),	 and	 leaf	mass	per	 area	 (LMA)	 for	 version	5B	of	 the	model	
(Jean-	Baptiste	et	al.,	2008;	Ali	et	al.,	2016).	At	the	canopy	level,	the	
INFORM	 (Invertible	 Forest	 Reflectance	Model)	 model	 (Atzberger,	
2000) simulates the bidirectional reflectance of forest stands be-
tween 400 nm and 2,500 nm using leaf optical properties and forest 
structural	parameters	such	as	single-	tree	 leaf	area	 index	 (LAI),	 the	
LAI	of	the	understorey	(LAI_u),	stem	density	(SD),	average	leaf	angle	
(ALA),	tree	height	(TH),	and	crown	diameter	(CD;	Atzberger,	2000;	
Schlerf	&	Atzberger,	2006).	 Scaling	 leaf	 traits	measured	 in	 situ	up	
to the canopy level requires particular care as canopy reflectance 
is	 influenced	 by	 many	 factors	 (Roelofsen	 et	 al.,	 2013;	 Feilhauer	
et	al.,	2017).	Furthermore,	some	traits	integrated	in	the	RTM	mod-
els, and proposed as practical explanations to otherwise complex 
problems (e.g., brown pigments and N in PROSPECT; Jacquemoud & 
Baret,	1990;	Feilhauer	et	al.,	2017;	Spafford	et	al.,	2021),	cannot	be	
measured easily experimentally. This makes the validation of some 
retrieved optical traits challenging. These models can be used in in-
verse mode to retrieve quantitative information on the traits from 
the optical properties. One of the most popular methods for model 
inversion	 is	 the	 lookup	 table	 (LUT)	 approach	 (Darvishzadeh	 et	 al.,	
2008). This method involves simulation of a set of spectra corre-
sponding to random or systematic combinations of the input param-
eters of a RTM, constrained by reasonable ranges, distributions and 
co- distributions. Traits corresponding to an observed spectrum are 
then	defined	based	on	the	minimization	of	a	criterion	between	this	
observation	and	 the	 simulations	 included	 in	 the	LUT,	 such	as	 root	
mean square error (RMSE).

As	previously	done	 in	other	 studies	 (Feilhauer	et	al.,	2017)	we	
considered the biophysical parameters retrieved from RTM inver-
sion	on	canopy	reflectance	data	as	optical	trait	indicators	(OTIs).	As	
stated	by	Feilhauer	et	al.	 (2017)	we consider OTIs featuring themati-
cally optimized informational content, which include a large percentage 
of vegetation- related information that can be gleaned from spectral re-
flectance data. By consequence, observed relations to OTIs can be easily 
interpreted in ecological terms, and the predictive power of OTIs is as-
sumed to be high. On the other hand OTIs are considered parameters 
that cannot be verified in the field. This limitation is widely accepted 
in the context of remotely sensed vegetation indices (for example, the 
normalized difference vegetation index NDVI), simple ratios or difference 
ratios of reflectance values measured in different wavelength regions, 
which correlate with a broad range of vegetation properties (Feilhauer 
et	al.,	2017)	To	distinguish	the	actual	traits	and	the	optical	trait	in-
dicators we refer to the single OTIs with the corresponding names 
of the PROSPECT- 5 and INFORM parameters described in Tables 1 
and 2.

The aim of this paper is to understand how OTIs derived from 
RTM	inversion	can	be	used	as	input	information	to	compute	SH	and	

relate it to species diversity. For this purpose, several OTIs are esti-
mated based on the inversion of the coupled RTMs PROSPECT- 5 and 
INFORM	using	Sentinel-	2	images	for	the	years	2017,	2018	and	2019	
in	 a	 coniferous	mountain	 forest	 in	 the	 eastern	 Italian	Alps	 (South	
Tyrol	province).	We	tested	SVH	for	each	leaf	biochemical	and	struc-
tural trait using Rao's Q as heterogeneity index and validated them 
against Shannon's H values calculated as species diversity index de-
rived from data collected in situ.

2  | METHODS

2.1 | Field data

The	 study	 area	 (Figure	1)	 is	 located	 in	 the	Province	of	Bolzano/
Bozen	(Italy)	 in	the	municipality	of	San	Genesio/Jenesien	(46.55°	
N,	11.32°	E).	Twenty	1-	ha	plots	 (100	m	× 100 m) were randomly 
chosen within a dense coniferous forest at 1,100 m a.s.l. char-
acterized	 by	 a	 high	 canopy	 cover.	 Following	 previous	 study	 de-
signs (Oldeland et al., 2010; Torresani et al., 2018), the center and 
corners of all plots were geo- referenced with a global position-
ing system (GPS) device (spatial accuracy of ±3	m;	Garmin,	USA).	
From	 June	 to	August	2017,	 trees	with	 a	diameter	 at	 breast	high	
(DBH)	of	at	least	5	cm	were	identified	at	species	level.	Among	the	
measured trees, 95% were coniferous species, dominated by Pinus 
sylvestris, followed by Larix decidua and Picea abies. The remaining 
5% were deciduous species such as Betula alba, Corylus avellana, 
Salix caprea and Sorbus aucuparia. The number of species per plot 
varied between 4 and 11. It is furthermore worth underlining that 
the forest composition did not change in the three years of study 
of this research.

We used the Shannon's H index (Equation 1) based on the oc-
currence of tree species, to assess the in- situ species diversity. 
Shannon's H is one of the most frequently used ecological indices; 

TA B L E  1   Optical traits with the corresponding PROSPECT- 5 
parameters. Range shows the ranges of OTI values used in this 
study

Optical trait
Prospect- 5 
parameter Unit Range

Leaf	structure	
index

N Unitless 1.1–	3.3

Chlorophyll 
content

Cab g/cm−2 9–	66

Carotenoid 
content

Car g/cm−2 1.8–	17.6

Brown 
pigments

Cbrown Unitless 0–	1.1

Equivalent 
water 
thickness

Cw g cm−2 0.0039–	0.033

Dry matter 
content

Cm g cm−2 0.0027–	0.033
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it is sensitive to both rarity and species abundance and has been 
used in different studies as a measure of alpha diversity (Torresani 
et al., 2019, 2020). This abundance- based diversity index, compared 
to measures of species richness (that describe the number of species 
in an area), has a better performance in representing biodiversity in 
remotely sensed images (Oldeland et al., 2010).

where H = Shannon's entropy used in ecology; n = number of species; 
and pi = proportion of species i relative to the total number of species.

The species diversity for each plot, calculated through Shannon's 
H,	is	summarized	in	Appendix	S1.

2.2 | Remote- sensing data

The canopy reflectance signal of the vegetation plots was derived 
from the Sentinel- 2 satellite data. This sensor system measures the 
solar	electromagnetic	spectrum	with	two	satellites	(Sentinel-	2A	and	
Sentinel-	2B)	 from	457	nm	 to	2,280	nm	with	13	bands.	All	 images	
available	for	the	years	2017	(n = 11 images available), 2018 (n = 12), 
and 2019 (n =	13)	were	used	for	this	purpose,	excluding	images	with	
suboptimal conditions of acquisition (e.g. presence of snow, shad-
ows, clouds, aerosols). For the three considered years, images from 
the	 90th	 to	 the	 310th	 day	 of	 the	 year	 (DOY)	were	 available.	 The	
images were acquired from the multispectral instrument (MSI) on 
board of both satellites between 10:00 and 11:00 am (local time). 
Sentinel-	2A	and	2B	satellite	images	acquired	with	the	relative	orbit	
numbers	R022	and	R065	and	provided	as	32TPS	were	downloaded	
from	ESA's	Sentinel	Scientific	Data	Hub.	For	each	image	we	selected	
the bands with 10 m × 10 m and 20 m × 20 m spatial resolution 
that were successively corrected for atmospheric, terrain and cirrus 
distortion with the Sen2Cor algorithm in order to produce bottom- 
of-	atmosphere	reflectance	images	(Louis	et	al.,	2016).	The	Sentinel-	2	
bands with a resolution of 20 m × 20 m were also resampled to 
10 m × 10 m using a bilinear interpolation.

2.3 | OTIs estimation

The inversion approach used to retrieve the OTI values for each plot 
from the canopy spectra of each Sentinel- 2 images followed the 
workflow	defined	by	Feilhauer	et	al.	(2017)	(Figure	2).

For this purpose, we used a hybrid inversion based on a machine- 
learning regression algorithm trained with simulated canopy re-
flectance	(see	Verrelst	et	al.,	2015	for	a	review)	obtained	from	the	

(1)H = −

∑

n
i= 1

pi × ln (pi)

TA B L E  2   Optical traits with the corresponding INFORM 
parameters. Range shows the ranges of OTI values used in this 
study

Optical trait
Inform 
parameter Unit Range

Single-	tree	LAI LAI Unitless 3–	7

LAI	understorey LAI_u Unitless 0–	2

Stem density SD trees/ha 250–	1000

Average	leaf	angle ALA deg 15–	65

Tree height TH m 5–	30

Crown diameter CD m 2–	8

Solar	zenith SZ degree 22.5–	78.1

Relative	azimuth RA degree 131.4–	180

Observer	zenith OZ degree 0

Fraction of diffuse 
radiation

FDR Unitless 0–	1

F I G U R E  1   The study area located in the municipality of San Genesio/Jenesien (South Tyrol) Italy, with the 20 plots
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PROSPECT- 5 leaf optical model coupled with the INFORM canopy 
model. This coupled model enables the generation of a virtually un-
limited number of canopy reflectances corresponding to a diversity 
of vegetation properties and conditions of acquisition and with the 
spectral characteristics of Sentinel- 2 data. We produced a lookup 
table (n = 10,000) by running the PROSPECT- 5 + INFORM models 
in	 forward	mode	 (Schlerf	&	Atzberger,	 2006;	 Jean-	Baptiste	 et	 al.,	
2008). The combination of input parameters was based on random 
sampling and followed the ranges defined in Tables 1 and 2. The 

range of the parameters was derived according to the species com-
position	of	the	plots	following	the	information	contained	in	the	Leaf	
Optical	 Properties	 Experiment	 Database	 (LOPEX;	 Hosgood	 et	 al.,	
1995;	Féret	et	al.,	2019)	and	in	other	related	studies	(Meroni	et	al.,	
2004;	Schlerf	&	Atzberger,	2012;	Navarro-	Cerrillo	et	al.,	2014).	The	
spatial resolution of the scenes simulated with INFORM was set to 
10 m × 10 m to match the Sentinel- 2 data. Successively, we used the 
lookup table to train the random- forest regression model (Pal, 2005) 
to predict values of each parameter from the spectra. The retrieved 

F I G U R E  2   Flowchart representing the approach we used in this study: by inversion of the radiative models and the random- forest model 
we retrieved the OTIs for each Sentinel- 2 image. The OTI heterogeneity (calculated with Rao's Q) was successively correlated by linear 
regression with Shannon's H
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values of the vegetation- related parameters were used as OTIs. The 
model for each OTI was trained using n = 5,000 samples while the 
remaining n = 5,000 were used to assess the performance of the ob-
tained regression models (R2 and RMSE). We furthermore assumed 
that some OTIs are supposed to show little variation within the year; 
this is the case for example of the N trait indicator or the OTIs related 
to the canopy structure derived from the INFORM model. For this 
reason, since our hypothesis is based on a multi- temporal approach, 
we decided a priori to focus our hypothesis on five leaf biochemical 
and structural properties derived only from the PROSPECT- 5 model.

The validation of the retrieved OTIs is outside the scope of this 
study, and we assume that strong uncertainty may exist for most of 
these estimations. Some of these OTIs cannot be measured exper-
imentally as they are either model parameters introduced as prag-
matic solutions to otherwise complex problems	(Feilhauer	et	al.,	2017)	
in the case of N (leaf structure parameter used in PROSPECT), which 
is used to describe the complexity of leaf anatomy and the result-
ing scattering effects on light, or chemical compounds with no clear 
experimental protocol to perform lab measurements in the case of 
brown pigments (Cbrown; Jacquemoud & Baret, 1990; Feilhauer 
et	 al.,	 2017).	 The	 parameters	 retrieved	 from	 RTM	 inversion	were	
subsequently	used	as	 input	 information	 to	 compute	SH.	The	OTIs	
are considered parameters with an information content similar to 
the initial spectral data that indeed incorporate vegetation- related 
information	 (Feilhauer	 et	 al.,	 2017).	Appendix	 S1	 shows	 the	 linear	
regression	between	observed	data	in	the	LUT	and	the	predicted	data	
from the regression model with the related R2 and RMSE values that 
indicates the goodness of the models.

2.4 | OTI heterogeneity

The Rao's Q index was used to calculate the OTI heterogeneity 
for each plot for all the images in the considered years following 
Equation (2).

Where Qrs = Rao's Q applied to remote- sensing data, p = relative abun-
dance of a pixel value (trait's value) in a selected area (F), dij = distance 
between the ith and jth pixel values (dij= dji and dii = 0), i = pixel i and 
j = pixel j.

The distance matrix dij can be built in different dimensions, al-
lowing the consideration of more than one band or raster at a time. 
In our case, dij was calculated as a simple Euclidean distance based 
on the single band (raster trait retrieved from the radiative transfer 
models). We used and implemented the R package function spectral-
rao()	(available	in	Rocchini	et	al.,	2017)	to	retrieve	a	Rao's	Q value for 
each 100 m × 100 m plot representing our local landscape.

The resulting values of the OTI heterogeneity were then com-
pared with the field Shannon's H based on linear correlation. 
Since our analysis was based on multiple analyses (multiple tests 
made using different images), we corrected the p- values with the 

Benjamini–	Hochberg	correction	to	get	an	unbiased	measure	of	sig-
nificance	(Benjamini	&	Hochberg,	1995).	The	whole	approach	is	sum-
marized	in	Figure	2.	Furthermore,	for	all	the	20	plots,	a	time	series	of	
each OTI’s values for the available images was obtained (mean of the 
pixel of each plot) to understand the temporal variation within the 
year	and	the	relation	to	the	SVH.

Finally, in order to understand which of the OTIs’ heterogeneity 
(calculated through the Rao's Q index) shows the strongest correla-
tion with the species diversity (Shannon's H) we decided to perform 
a	principal	components	analysis	 (PCA)	of	 the	single	OTIs	 (for	each	
of the three considered years). Successively we projected into the 
same	PCA	space	the	species	diversity	data	(Shannon's	H) calculated 
through the envfit function from the vegan package of R. The results 
will	show	how	the	OTIs	(vectors)	behave	in	the	PCA	space	and	which	
ones run in the same direction as the species diversity vector.

3  | RESULTS

The temporal R2 trend between Shannon's H derived from in- situ 
data and the Rao's Q index computed from each OTI for 2019, 2018 
and	2017	 is	presented	 in	Figures	3,4,	and	5	 respectively.	Figure	6	
summarizes	the	OTIs’	time	series	(calculated	as	the	mean	of	the	pixel	
values of each plot) for the three considered years.

Focusing	on	2019	(Figure	3)	the	trait	heterogeneity	(in	particu-
lar of Car, Cab and Cbrown) calculated with the Rao's Q index in a 
defined time of the year shows a correlation (through the R2) with 
the in- situ data. The correlation between Shannon's H obtained 
from field inventories and Rao's Q computed from estimated bio-
physical properties was maximum when using Cbrown computed 
from	an	image	acquired	in	summer	(DOY	=	205,	i.e.,	July	23,	2019;	
R2 = 0.68). Examining Cab, the highest coefficient of determination 
(R2 = 0.61) was reached when the chlorophyll content was higher, 
in this case in late summer. The curve has a similar trend diverging 
just at the beginning of the year when the Cab curve shows an un-
expected high value. Considering the Car OTI, the R2 reached the 
highest	values	(up	to	0.62)	around	DOY	150,	in	total	contrast	to	the	
actual OTI content that in this period was the lowest of the season. 
The Car content indeed displays a typical trend for conifer forests, 
having its highest values in winter and lowest in spring (Gamon et al., 
2016). The correlations obtained when using Cm (dry matter con-
tent) and Cw (equivalent water thickness) did not show significant 
relationships with the in- situ data, and showed moderate changes 
through the year.

In 2018 Car, Cab and Cbrown also showed the strongest correla-
tion with the in- situ data (Figure 4) in line with the results obtained 
in 2019. Cbrown showed, as in 2019, the highest R2 value in summer 
(R2 = 0.68) when the Cbrown time- series curve was at the minimum 
value. Estimated Cab time series showed seasonal variations corre-
sponding to the seasonality of the typical photosynthetic activity ob-
served for alpine coniferous forests (Torresani et al., 2019). The same 
trend was showed by the R2 curve with the highest values (between 
R2 = 0.66 and R2 = 0.69 ) in summer. The Car time series showed 

(2)Qrs =

∑

F− 1
i= 1

∑

F
j= i+ 1

dij × pi × pj
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F I G U R E  3  Year	2019:	for	each	OTI	the	
figure shows the R2 trend derived from 
the linear regression between the OTI 
heterogeneity and the in- situ tree species 
diversity (Shannon's H) and the OTI time 
series as the mean of the pixel of each plot
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F I G U R E  4  Year	2018:	for	each	OTI	the	
figure shows the R2 trend derived from 
the linear regression between the OTI 
heterogeneity and the in- situ tree species 
diversity (Shannon's H) and the OTI time 
series as the mean of the pixel of each plot
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F I G U R E  5  Year	2017:	for	each	OTI	the	
figure shows the R2 trend derived from 
the linear regression between the OTI 
heterogeneity and the in- situ tree species 
diversity (Shannon's H) and the OTI time 
series as the mean of the pixel of each plot
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highest values in the cold months, in total contrast to the R2 time series 
where the highest values(R2 =	0.72)	were	found	in	summer.

Figure	5	shows	the	results	for	the	year	2017.	The	Cab	time	se-
ries was in line with the previous considered years, having the lower 
values in winter and rising in summer. The values decreased toward 
autumn	 but	 seemed	 to	 increase	 again.	 Unfortunately,	 there	 were	
no images available to extend the time series until December. The 
R2 curve followed the trend shown in 2018 and 2019 (high in sum-
mer and low toward winter) but did now follow the trait curve as 
expected. Similar patterns were observed for Car. The trait time se-
ries was in line with the ones obtained in 2018 and 2019 (low in 
spring and high in autumn) but the R2 curve was not, indicating no 
relationship between the trait and the species diversity through the 
year. Cbrown showed a consistent and consolidated R2 curve and 
trait time series with opposite trends. The highest R2 (R2 = 0.8) was 
found indeed when the trait has the lowest value through the year.

Figure	 7	 summarizes	 the	 final	 results	 in	 order	 to	 understand	
which of the OTIs’ heterogeneity has the strongest correlation with 
the species diversity (calculated with the Shannon's H index). The 
figure shows, for the three considered years, how the OTIs’ hetero-
geneity (calculated through the Rao's Q index) and the species di-
versity index (Shannon's H)	behave	in	the	PCA	space.	For	the	three	
years, the Shannon's H vectors run in the same direction as the 
group of Cbrown OTIs. The Cbrown OTI, for this ecosystem and for 
the considered years, can be considered the OTI with the strongest 
correlation with the Shannon's H index.

4  | DISCUSSION

In	 this	 study	 we	 aimed	 to	 analyze	 the	 relation	 between	 species	
diversity in forests and the spectral variation derived from OTIs 

F I G U R E  6   Summary of three years of OTI time series as the mean of the pixel values of each plot
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estimated from physical model inversion applied on Sentinel- 2 im-
ages. For this purpose, we retrieved OTIs from the inversion of the 
RTMs PROSPECT- 5 and INFORM using Sentinel- 2 images for the 
years	2017,	2018,	2019	in	a	coniferous	forest	in	the	Italian	Alps.	We	
tested	the	SVH	for	each	retrieved	OTI	using	the	Rao's	Q as heteroge-
neity index as a proxy for Shannon's H values calculated from in- situ 
species inventories.

We showed that the statistical relation between OTIs and tree 
species diversity strongly varied between OTIs and through the year. 
The inter- annual R2 trend is driven by the typical variation of the 
OTIs and not due to the change in tree species diversity that is sup-
posed to remain relatively stable unless major changes happen, such 
as clear- cuts, disease or insect infestation. That was not the case in 
our study area.

The variation of Cbrown, Car and Cab can be considered a proxy 
of tree species diversity in this kind of ecosystem. The heterogeneity 
of these OTIs at specific times of the year reflects the environmental 
heterogeneity that is linked to the tree species diversity of the forest 
(Rocchini et al., 2004; Torresani et al., 2019). In particular, the varia-
tion of Cbrown showed the highest level or relationship (highest R2) 
and	 strongest	 correlation	 (after	 the	 PCA	 analysis)	with	 the	 in-	situ	
tree species diversity. These brown pigments are produced in the 
leaf as a result of the degradation of fresh leaf constituents during 

senescence at the end of the leaf’s life cycle. They represent light ab-
sorption by non- chlorophyll pigments since they appear when leaves 
start to senesce (Jacquemoud & Baret, 1990). In the three consid-
ered years the variation of this OTI reached the highest value of re-
lationship with the tree species diversity, always in summer when 
the OTI time series curve was at the lower point. In winter time the 
Cbrown values increase, tending to mask the differences between 
species and making the discrimination more difficult. This difference 
might	be	particularly	emphasized	due	 to	 the	presence	of	Larix de-
cidua and broad- leaved trees that, due to the senescence of their 
leaves and the winter leaf- off mechanism, have different Cbrown 
values compared to the conifer trees.

For the 2018, the Cab time series and the related R2 curve 
showed a similar trend with highest values in summer, correspond-
ing to the peak of the vegetation for the considered area (Torresani 
et al., 2019). Cab shows unexpectedly high values in early 2019 and 
late	2017.	This	small	discrepancy	could	be	driven	by	different	factors	
such as seasonal and meteorological conditions that can modify the 
stomatal conductance, which is highly related to chlorophyll con-
tent (Matsumoto et al., 2005). The image quality, the pre- processing 
of the data, and the atmospheric and geometric corrections could 
also contribute to the small inconsistency typical of studies where 
remote- sensing data are used to assess vegetation proprieties.

F I G U R E  7  Principal	components	analysis	(PCA)	space	with	the	OTI	reference	(blue	vectors),	the	Shannon's	H species diversity index 
(red	vector)	and	the	20	study	plots	(white	dots).	For	the	three	considered	years	(a,	2019;	b,	2018;	c,	2017)	the	red	vectors	run	in	the	same	
direction as the Cbrown OTI vectors, particularly during summer days when the level of correlation (R2) is higher
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Carotenoids also evidenced potential for species diversity map-
ping following our approach, although the correlation obtained for 
the	acquisitions	from	2017	were	remarkably	low	over	the	full	year.	
These pigments play an important role in plants, acting as photopro-
tective and antioxidants pigments. The seasonal evolution of the leaf 
carotenoid content may vary between species, as it tends to follow 
the chlorophyll content for broad- leaved trees, while some studies 
reported the maximum carotenoid content in winter for needles in 
various	 conifer	 species.	 (Adams	 &	 Demmig-	Adams,	 1994).	 These	
pigments might be useful for example to distinguish broad- leaved 
and evergreen trees, especially in fall when the difference of this 
pigment	between	the	two	groups	of	trees	increases.	Although	the-
oretically particularly relevant for the monitoring of taxonomic and 
functional diversity, carotenoids remain extremely challenging to 
estimate accurately from multispectral satellites such as Sentinel- 2, 
and the uncertainty associated with their estimation is significantly 
higher than the uncertainty associated with the estimation of chlo-
rophyll content. First, carotenoids only absorb in the visible do-
main: only the blue band and to a lesser extent the green band of 
Sentinel- 2 show potential sensitivity to changes in carotenoids, and 
the blue band shows high uncertainty due to atmospheric scattering, 
which increases exponentially from longer to shorter wavelengths. 
Hence	further	investigations	into	the	sensitivity	of	Sentinel-	2	data	to	
changes in carotenoids are needed to understand if our results are 
actually explained by seasonal changes in carotenoid content.

The relationship between OTI heterogeneity and tree species di-
versity varies strongly within the year. This multi- temporal approach 
in	the	context	of	the	SVH	was	tested	by	Torresani	et	al.	(2019),	high-
lighting the importance of considering different images through the 
year for the assessment of tree species diversity. In that case the 
authors	tested	the	SVH	in	the	same	study	area	as	used	in	this	paper,	
comparing	tree	species	diversity	with	the	variation	of	the	NDVI	de-
rived	from	Sentinel-	2	and	Landsat	8	images,	showing	that	the	high-
est R2 was found in summer, at the peak of the considered vegetation 
index.	Other	studies	not	related	to	the	SVH	suggest	indeed	that	the	
timing of data acquisition (e.g. right choice of a phenological stage) is 
fundamental for the achievement of better results in remote sensing 
of	vegetation	models	(Feilhauer	et	al.,	2010,	2017).	The	outcomes	of	
the present research support these findings.

Another	important	aspect	to	underline	is	the	data	used	to	retrieve	
the OTI. The retrieval of the OTI through RTM inversion applied on 
Sentinel- 2 data is limited compared to imaging spectroscopy data, 
due to the limited number of bands and their spectral and spatial res-
olution	(Lepine	et	al.,	2016;	Shiklomanov	et	al.,	2016).	Nonetheless,	
many vegetation characteristics are related to relatively wide spec-
tral	 regions	 (Verrelst	 et	 al.,	 2016)	 and	 the	 spectral	 characteristics	
of the Sentinel- 2 bands seem to be sufficient to assess these pro-
prieties	 or	 other	 morphological	 plant	 traits	 (Darvishzadeh	 et	 al.,	
2019a,b; Rossi et al., 2020).

Some concerns might arise about the absence of in- situ valida-
tion	data.	Unfortunately,	a	full-	scale	validation	of	the	retrieved	OTIs	
was	not	possible,	because	the	field	campaign	carried	out	in	2017	did	
not include any trait measurements. Further, as outlined above, some 

RTM parameters cannot be directly linked to field measurements. 
Due to the lack of calibrated data we consider the use of OTIs as the 
first step toward better understanding of the relationship between 
the traits’ heterogeneity and the tree species diversity in a forest 
ecosystem. Further analyses including a validation of the retrieved 
values are needed. Still, the use of OTIs without calibration/vali-
dation data has been carried out in other similar studies (Feilhauer 
et	al.,	2017)	showing	promising	results.	It	is	worth	underlining	that	
on the one hand, the in- situ data could be useful to calibrate the 
models, but on the other hand collected data could frequently cre-
ate uncertainty, especially when the information is transferred at the 
level of pixels (McCoy, 2005). We are aware that uncertainties in 
the estimation of leaf chemistry from physical model inversion need 
to	be	 considered	carefully.	However,	we	have	 to	put	 these	uncer-
tainties	in	perspective	and	need	to	realize	that	most	assessments	of	
diversity are rather uncertain. In the present study we refrain from 
interpreting the retrieved OTI values in absolute terms, meaning we 
do not treat them as equally accurate as laboratory measurements 
of, e.g., chlorophyll concentrations. Still, we are convinced that the 
retrieved values can be interpreted reliably in relative or qualitative 
terms. This confidence is supported by the temporal development 
of the OTI values, which follow the expected trends in most cases, 
allowing the conclusion that such parameters can be retrieved from 
spectral data using RTM inversions. We are furthermore aware that 
the results might be sensitive to the initial values used in Tables 1 
and 2.

Another	 important	 concern	 that	 emerged	 in	 other	 studies	
(Torresani et al., 2019) is the small extent of the study area, a dense 
alpine coniferous forest dominated mainly by coniferous species. 
The use of a limited number of plots in similar studies is common 
and	represents	a	typical	bias	of	any	empirical	study	(Rocchini,	2007).	
Gould	 (2000)	tested	the	SVH	in	the	Hood	river	region	of	the	cen-
tral	Canadian	arctic	using	17	plots	of	0.5-	km2	size.	In	their	estimate,	
Torresani	et	al.	 (2019)	tested	the	SVH	using	two	NDVI	time	series	
from	Sentinel-	2	and	Landsat	8	in	the	same	20	plots.	Rocchini	et	al.	
(2004) used 22 plots to test the spectral variation of multispectral 
images to estimate the species diversity in a wetland area in Central 
Italy. This study represents another step to understand the relation 
between the spectral variability of OTIs (derived from optical data) 
and the species diversity in an alpine coniferous forest. Our test was 
the	 first	 that	made	use	of	 the	methodology	 typical	of	 the	SVH	to	
assess this relationship. Different other studies focused their work. 
The outcomes of this research can probably be applied to wider 
areas on the strength of the general relation between spectral het-
erogeneity	 and	 species	 diversity	 (Rocchini,	 2007;	 Rocchini	 et	 al.,	
2010;	Féret	&	Asner,	2014;	Féret	et	al.,	2019).

Our hypothesis was not based on directly catching species di-
versity in the field, but on using indirect measures based on environ-
mental heterogeneity. The results showed that the variability of the 
OTIs can be directly related to environmental heterogeneity, which 
in turn might be a proxy of species diversity (Torresani et al., 2019). 
It is worth underlining that the environmental heterogeneity is not 
the only variable that affects biodiversity in forest ecosystems. Our 
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objective was indeed to test the variability of the OTIs as a proxy for 
tree species diversity in a coniferous forest ecosystem.

5  | CONCLUSION

This study focused on the relation between tree species diversity and 
the heterogeneity of a set of OTIs retrieved from RTM inversion using 
the coupling of PROSPECT- 5B and INFORM, for individual Sentinel- 2 
images acquired in an alpine coniferous forest ecosystem during three 
years. The OTIs’ heterogeneity was calculated with the Rao's Q index. 
This research underlined that the OTIs contribute differently in the 
SVH	for	the	estimation	of	tree	species	diversity.	We	demonstrated	sig-
nificant positive correlations between tree species diversity expressed 
by Shannon's H and the spatial heterogeneity of estimated pigment 
content (chlorophylls, carotenoids and brown pigment content). 
Further	tests	based	on	PCA	indicate	that	the	heterogeneity	of	the	OTI	
Cbrown has the strongest correlation to Shannon's H.

As	underlined	in	the	Discussion this study represents a first step 
to understanding the relationship between OTI heterogeneity and 
species diversity. Further studies have to be conducted in other eco-
systems, using different remote- sensing images and validation data, 
before	the	approach	can	be	considered	a	generalizable	method.

These first results, with their strength and limitations, allow us 
to	better	understand	how	the	SVH	behaves	in	forest	ecosystems	for	
rapid assessment of tree species diversity in topographically highly 
complex	regions	to	guide	field	sampling	and	localization	of	biodiver-
sity hotspots.
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