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Abstract
Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially 
explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and an-
thropogenic variables. The distribution of habitat types is a key component for un-
derstanding broad- scale biodiversity and for developing conservation strategies. We 
used data on the distribution of European Union (EU) habitats to answer the follow-
ing questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect 
habitat richness? (ii) Which of those factors is the most important? (iii) How do in-
teractions among these variables influence habitat richness and which combinations 
produce the strongest interactions? The distribution maps of 222 terrestrial habitat 
types as defined by the Natura 2000 network were used to calculate habitat rich-
ness for the 10 km × 10 km EU grid map. We then investigated how environmental 
variables affect habitat richness, using generalized linear models, generalized additive 
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1  |  INTRODUC TION

The need to preserve dynamic ecosystems under changing climates 
and increasing anthropogenic pressure challenge traditional con-
servation approaches that are based on the current distribution of 
species. An application- oriented way forward may lie in protecting 
those landscape elements that support the coexistence of many 
species. Indeed, the habitat (or ecosystem) approach for conserva-
tion has been recently highlighted by the IUCN as a necessary step 
for conservation. Under this view, habitat diversity is a complex, spa-
tially explicit measure of biodiversity (Bunce et al., 2013), which has 
proven to be a prominent driver for species diversity of a variety of 
taxa at the landscape scale (Alsterberg et al., 2017; Dianzinga et al., 
2020; Gibb et al., 2020; Keppel et al., 2016; Kerr & Packer, 1997).

According to the EU Habitats Directive (Council Directive 
92/43/EEC), the term “habitat” refers to an environmental unit 
defined by specific abiotic and biotic factors. Although alternative 
definitions exist (Davies et al., 2004; Drakou et al., 2011; Hall et al., 
1997; Kearney, 2006; Mitchell, 2005; Yapp, 1922), this formulation 
provides a pragmatic operational tool for characterizing landscape 
elements of conservation priority.

Term “habitat” in the context of the EU Habitats Directive has a par-
ticular meaning, which deviates from the autecological species- related 
concept “habitat” in ecology. As an “environmental unit” that includes 
species assemblages and site conditions, the term “habitat” used in this 
context is closer to the concept of ecosystems (sensu Keith et al., 2013), 
even if some units are rather defined by mere plant communities (re-
flected in phytosociological terminology) (e.g., 6190 “Rupicolous pan-
nonic grasslands (Stipo- Festucetalia pallentis)”) and others are classified 
based on abiotic site conditions (e.g., 8240 “Limestone pavements,” 8320 
“Fields of lava and natural excavations”), places (e.g., 8310 “Caves not 

open to the public”), or geographical units (e.g., 1150 “Coastal lagoons,” 
1620 “Boreal Baltic islets and small islands”). Some units are character-
ized by vegetation structures (e.g., 5400 “Phrygana”) while others by 
typical species (e.g., 6160 “Oro- Iberian Festuca indigesta grasslands”).

For the operational meaning of habitats, fluxes of energy and 
matter, and the processes that are forming an ecosystem, are not 
considered, even if these might be important (e.g., carbon seques-
tration, evapotranspiration). The concept of habitat is thus more 
focused on ecological compartments with a main emphasis on veg-
etation. Being aware of this inconsistency, using habitat types as 
indicated by EU Habitats Directive, provides a standardized and le-
gally established tool for monitoring and assessment complex units, 
which is crucial for nature conservation.

Habitat diversity can be measured as the number of differ-
ent habitats in a given area (Hortal et al., 2009; Triantis et al., 
2006)— herein referred to as “habitat richness.” Habitat richness can 
be monitored in situ or by remote sensing techniques (Jung et al., 
2020; Radeloff et al., 2019; Tuanmu & Jetz, 2015). Moreover, the 
accessibility of habitat distribution data is steadily growing, often 
provided in the form of maps, which may sometimes be proxies for— 
and the only available information on— the distribution of specific 
groups (e.g., plants and invertebrates).

Habitat richness reflects environmental conditions and can be 
used as an explanatory variable for modeling the distributions and 
abundances of species or communities (Heidrich et al., 2020; Leclère 
et al., 2020). Many studies have focused on the factors regulating 
the spatial variation in species richness (Brown & Lomolino, 2005; 
Field et al., 2009; Gaston, 2000; Howard et al., 2020; Quintero & 
Jetz, 2018; Rosenzweig, 1995). Species richness is typically cor-
related with variables such as climate (Gao & Liu, 2018; Thuiller et al., 
2005), latitude (Gaston, 2000, 2007; Hillebrand, 2004), topographic 

models, and boosted regression trees. The main factors associated with habitat rich-
ness were geographic variables, with negative relationships observed for both latitude 
and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables 
played a secondary role, with habitat richness increasing slightly with annual mean 
temperature and overall annual precipitation. We also found an interaction between 
anthropogenic variables, with the combination of increased landscape fragmentation 
and increased population density strongly decreasing habitat richness. This is the first 
attempt to disentangle spatial patterns of habitat richness at the continental scale, 
as a key tool for protecting biodiversity. The number of European habitats is related 
to geography more than climate and human pressure, reflecting a major component 
of biogeographical patterns similar to the drivers observed at the species level. The 
interaction between anthropogenic variables highlights the need for coordinated, 
continental- scale management plans for biodiversity conservation.

K E Y W O R D S
anthropogenic impact, biodiversity conservation, environmental predictors, European habitat 
directive, habitat richness, terrain ruggedness index
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heterogeneity (Hortal et al., 2009), and anthropogenic pressure (Liu 
et al., 2018; Malavasi et al., 2016). Contextually, the habitat amount 
hypothesis (Fahrig, 2013) predicts that species richness in equal- 
sized sample sites should increase with the total amount of habitat. 
Similarly, the number of species inhabiting a region can be explained 
by the number of vegetation types as a surrogate of habitat diver-
sity (Jiménez- Alfaro et al., 2016). However, the relative importance 
of habitat amount and its spatial configuration (e.g., fragmentation, 
connectivity, or perimeter/area ratio) on biodiversity patterns is still 
subject of debate (Fahrig, 2021; Saura, 2021a, 2021b).

Despite the importance of habitat richness and the large amount 
of spatial data available for many terrestrial habitats, there is a 
knowledge gap on the mechanisms that determine the spatial pat-
terns of habitat richness, especially at continental scales. To our 
knowledge, no research has been done on the underlying factors 
associated with habitat richness at continental level. In Europe, bio-
diversity conservation policy focuses on habitat protection (e.g., 
Council Directive 92/43/EEC), and achieving measurable improve-
ments of the conservation status of Natura 2000 habitats is one of 
the main targets of the 2030 Biodiversity Strategy. As mandatory 
biodiversity monitoring, every EU member country is obliged to pro-
vide on a regular basis (every six years— art. 17 Habitat Directive) 
habitat distribution maps on a 10 km × 10 km grid map. Thus, disen-
tangling the role of environmental factors determining habitat rich-
ness is a key challenge both for basic understanding of biodiversity 
distribution and for guiding conservation strategies (Mücher et al., 
2009; Zhang et al., 2020).

To investigate how habitat richness is correlated with environ-
mental factors across the EU, we used habitat distribution data 
from the third report of the EU Habitats Directive (EEA, 2020a). 
Specifically, we seek to answer the following questions: (i) how do 
bioclimatic, geographic, and anthropogenic variables affect habitat 
richness? (ii) Which factor is the most important? (iii) How do inter-
actions among these variables influence habitat richness and which 
combinations produce the strongest interactions?

2  |  MATERIAL S AND METHODS

2.1  |  Habitat richness

We used habitat distribution maps of 222 terrestrial habitats of com-
munity interest from the EU 2007– 2012 reporting period, obtained 
from the European Environment Agency (EEA, 2020a). Distribution 
of the protected habitat type in Europe is based on the standard 
grid (10 km × 10 km) provided by EEA for habitat monitoring (EEA, 
2013), and we assume it is representative of the whole ecosystem 
diversity. From a total of 231 habitat types, 9 marine habitats were 
excluded according to the appendix 2 of the “Lists of existing marine 
Habitat types and Species for different Member States” (European 
Commission, 2021). We calculated EU habitat richness (thereafter 
“habitat richness”) by summing up the number of habitat type re-
ported in each cell of the above- mentioned map provided by the 

EEA. All the EU countries that contributed to the third report were 
included, except Greece due to lack of habitat reporting there.

Despite being composed of equal- area cells (i.e., 10 km × 10 km), 
the EEA grid has many cells located in coastal areas, often reducing 
the terrestrial surface within the cell. It has been widely reported 
that both species richness and habitat richness increase as a function 
of area (Lomolino, 2000; Rosenzweig, 1995; Triantis et al., 2012). 
Because of the effect of area on habitat richness, we applied a modi-
fied log– log power function (Arrhenius, 1921; Triantis et al., 2012) to 
normalize habitat richness values based on within- cell land area. This 
involved adding 1 to habitat richness in order to have a normalized 
value of 0 when no habitat was present (instead of having minus in-
finite) and the absolute value of the denominator in order not to have 
inconsistent values when area was between 0 and 1 km2.

2.2  |  Relations with species richness

Species richness data were obtained from the distributions of 
species reported in the Annexes of the Birds Directive (Council 
Directive 2009/147/EC; Annex I to V) and the Habitats Directive 
(Council Directive 92/43/EEC; Annex II, IV, and V) reported by EU 
member states for 2007– 2012 (EEA, 2020a, 2020b). Further details 
can be found in Hoffmann et al. (2018). To test the assumption that 
habitat richness is a proxy of biodiversity conservation status, we 
calculated Pearson's r correlation coefficient (Pearson, 1931) to as-
sess the correlation between habitat richness and species richness.

2.3  |  Environmental variables

We investigated the relationship between habitat richness and 
three groups of environmental variables: bioclimatic, geographic, 
and anthropogenic. Multicollinearity among variables was assessed 
through Pearson's r. Within variable pairs holding Pearson's r > .7 
(see Figure S1), the one judged to have less ecological importance 
was discarded from model building (Dormann et al., 2013; Elith et al., 
2006).

We extracted the 19 bioclimatic variables from WorldClim (Fick 
& Hijmans, 2017) at 10 km × 10 km resolution. Through variable 
selection (see Brandt et al., 2017), we ensured balanced represen-
tation of temperature and precipitation (both mean and seasonal 
variation— see Table 1 for a summary of the explanatory variables).

Geographic variables, such as latitude and longitude, strongly 
affect species and habitat richness at different spatial scales 
(Drakou et al., 2011). Moreover, northing and easting (i.e., latitude 
and longitude, respectively, as geographic Cartesian coordinates) 
may be used to account for spatial autocorrelation. For these rea-
sons, we included these two factors as explanatory variables in all 
the models. In order to capture geographic heterogeneity (Dufour 
et al., 2006), we included the terrain ruggedness index (TRI— Riley 

(1)Normalized Habitat Richness (NHR) =
log10 (HR + 1)

|log10 (area)|
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et al., 1999). TRI is defined as the mean of the absolute differences 
in elevation changes (Riley et al., 1999), and it is highly positively re-
lated to elevation (Amatulli et al., 2018). To obtain the Europe- wide 
TRI, we used a freely available, 20- m resolution digital elevation 
model (DEM) for the EU (EU- DEM, 2021). We resampled the DEM 
to 200 m × 200 m pixel size using the arithmetic mean for aggre-
gation. Then, for each 10 km × 10 km grid cell, we summed all the 
2500 values obtained for TRI to obtain the topographic heteroge-
neity within each cell.

Anthropogenic factors and their interaction with bioclimatic and 
geographic variables strongly affect animal and plant biodiversity at 
global terrestrial scale (Mantyka- Pringle et al., 2012, 2013). Three 
‘anthropogenic’ variables were considered: landscape fragmentation 
index (LFI), population density, and total street length and street 
density (Table 1). Landscape fragmentation was extracted from 
EEA (EEA, 2011), and it was calculated based on the Effective Mesh 
Density, which is a measure of the degree to which movement be-
tween different parts of the landscape is interrupted by fragmen-
tation geometry (FG) (Jaeger, 2000). The more FGs fragment the 
landscape, the higher the effective mesh density and hence the frag-
mentation (EEA, 2011; Jaeger, 2000; Moser et al., 2005; Schmiedel 
& Culmsee, 2016). Population density was also extracted from EEA 
(EEA, 2009). Both landscape fragmentation and population density 
were upscaled from 1 km2 to 100 km2 resolution, aggregating cells 
by median values due to their skewed distributions. Data on street 
length were extracted from the “Global biodiversity model for pol-
icy support” (GLOBIO— Meijer et al., 2018). Total street length was 
calculated by combining the length of all street types within each 
cell (highways, primary, secondary, tertiary, and local roads). Street 
density was calculated dividing the total street length by the area of 
each cell.

2.4  |  Data analysis

To test the significance of habitat richness as proxy of biodiversity, 
we first analyzed the relation between habitat richness and the 
richness of the species listed in the Annex species of the Birds and 
Habitats Directives, as reported by the single countries, by using 
Pearson correlation coefficient.

We then used generalized linear models (GLMs), generalized ad-
ditive models (GAMs), and generalized boosted models (GBMs) to 
investigate how habitat richness responds to the selected climatic, 
geographic, and anthropogenic variables at the EU scale.

To identify the interactions to be included in the models, we ran 
all the possible combinations of variable pairs using the glmulti func-
tion from the glmulti package (Calcagno & de Mazancourt, 2010). 
To assess the best settings for the GBM models, all the possible 
combinations of three different numbers of trees (10,000, 15,000, 
and 20,000), four interaction depths (3, 5, 7, and 9), three shrinkages 
(0.01, 0.1, and 0.5) and three bag fractions (0.65, 0.8, and 1) were 
employed. We selected the combination with the lowest root mean 
square error (RMSE).

We run autocovariate models to filter out spatial dependence 
(Harisena, 2021). These models are usually based on autocovariate 
estimation directly on the response variable. Crase et al. (2012) de-
veloped a related procedure, in which autocovariates are quantified 
from the model residuals, rather than the raw data. This leads to an 
autocovariate that captures only the variance not explained by ex-
planatory variables (Fletcher & Fortin, 2018). Moreover, models in-
cluding autocovariates typically provide unbiased estimates of fixed 
effects, as demonstrated by Bardos et al. (2015). To fit autocovariate 
models, we calculated autocovariates on the model residuals and 
then we used these covariates in a new model. These autocovariates 

TA B L E  1  Summary of explanatory and response variables. In bold variables selected for model building

Group Acronym Description Type Data source

Bioclimatic BIO_1 Mean Annual Temperature Numeric Fick and Hijmans (2017)

Bioclimatic BIO_4 Temperature Seasonality Numeric

Bioclimatic BIO_7 Temperature Annual Range Numeric

Bioclimatic BIO_12 Annual Precipitation Numeric

Bioclimatic BIO_15 Precipitation Seasonality Numeric

Bioclimatic BIO_17 Precipitation of Driest Quarter Numeric

Anthropogenic FRAG_IND Landscape Fragmentation Indicator Raster EEA (2011) and Jaeger (2000)

Anthropogenic STREET_LENGTH Total street length Shapefile Meijer et al. (2018)

Anthropogenic STREET_DENSITY Total street length divided by the 
area of a 10 km x 10 km cell

Shapefile Meijer et al. (2018)

Anthropogenic POP_DENS Population density Raster EEA (2009) and Gallego (2010)

Geographic TRI Terrain Ruggedness Index Derived from DEM EU- DEM (2021)

Geographic NORTH Northing /

Geographic EAST Easting /

Response HAB_RICH Habitat richness Count /

Response NORM_HAB_RICH Habitat richness normalized Variables /
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were calculated using the autocov_dist function in the spdep package 
(Bivand & Wong, 2018).

Variable importance for GLMs and GAMs was calculated ex-
cluding explanatory variables one by one from the models. Then, 
the contribution of each variable was assessed using the difference 
in deviance (D2) between the model with and without that variable 
(Márcia Barbosa et al., 2013).

To produce response curves, we used the modified inflated re-
sponse curve (Zurell et al., 2012) for abundance models. Interaction 
curves were produced by setting the explanatory variables to their 
mean values.

In addition, we calculate Pearson's r correlation for each candi-
date explanatory variable (1st and 2nd order polynomials) in order to 
show the bivariate relationship between normalized habitat richness 
and the entire set of environmental variables (Figure S3).

Data processing was performed with R 3.6.3 (R Core Team, 2020), 
using the following packages: glmmulit (Calcagno & de Mazancourt, 
2010), gbm3 (Hickey, 2016), ggplot2 (Wickham, 2016), ggeffect 
(Lüdecke, 2018), plot3D (Soetaert, 2019), tidyverse (Wickham et al., 
2019), dplyr (Wickham et al., 2020), lhs (Carnell, 2020), patchwork 
(Pedersen, 2020), mgcv (Wood, 2020), and GGally (Schloerke et al., 
2021).

3  |  RESULTS

Among the member countries of the European Union (EU, excluding 
Greece and including the former member United Kingdom), habitat 
richness (or habitat type richness; see Methods) per 10 km × 10 km 
cell (N = 43,240 cells in total) ranged from 0 to 43 (Figure 1a). While 
normalized habitat richness (i.e., habitat richness corrected for ac-
tual cell area) ranged from 0 to 1.5 (Figure 1b).

Both maps show a heterogeneous distribution of habitat rich-
ness, peaking along the main mountain chains of Southern Europe 
and Central Europe as well as the Baltic area (Figure 1). Moreover, 
the habitat richness was positively correlated (r = .34, p < .001) with 
the richness of the species listed in the Annex species of the Birds 
and Habitats Directives as reported by every country (see Figure 
S2).

Geographic variables showed similar effects across the differ-
ent models, having the greatest cumulative contribution (Figure 2). 
Northing and Easting were the most important variables, with about 
25% of relative influence each. Terrain ruggedness index (TRI), with 
about 20% of relative influence, was the third most important vari-
able affecting habitat richness.

Climatic variables had widely different relative influence, with 
annual mean temperature having far more influence (ca. 15%) than 
the other three climatic variables taken together (annual tempera-
ture range, total annual precipitation, and precipitation seasonality; 
Figure 2). Finally, anthropogenic variables had only a minor contribu-
tion (ca. 5%) (Figure 2).

3.1  |  Effects of environmental variables on 
habitat richness

Both mean annual temperature and annual precipitation had a pos-
itive effect on normalized habitat richness, which also increased 
linearly with TRI (Figure 3). Habitat richness diminished toward 
eastern regions of the EU, while latitude showed an initial negative 
effect on habitat richness, it then slightly increased. The interac-
tions between geographic and bioclimatic variables have shown 
a strong impact on habitat richness (Figure 4). The highest values 
of habitat richness were observed at low latitudes, where annual 
precipitation was moderately high. The positive trends observed 
for mean annual temperature and mean annual precipitation were 
considerably stronger in more rugged cells (higher TRI in Figure 4). 
Other interactions among bioclimatic variables did not show any 
remarkable trend. The landscape fragmentation index on its own 
showed a positive effect on habitat richness. In contrast, popula-
tion density index did not reveal any clear pattern (Figure 3), though 
it has interesting interaction with landscape fragmentation values; 
in particular, high landscape fragmentation affects positively habi-
tat richness at low population but negatively at high population 
density (Figure 4).

3.2  |  Model performance

The explained deviance of the GLMs without autocovariate was 
0.22, whereas after accounting for spatial autocorrelation, the ex-
plained deviance reached 0.59 (Table 2). The root mean square error 
(RMSE) indicated large differences among the explained deviance by 
the GLM and GAM on one side and the BRT on the other side, with 
the former models showing 0.27 and 0.26, respectively, and the lat-
ter 0.85. By adding the autocovariates to the models, GLM and GAM 
showed substantial improvements (reducing the RMSE to 0.2 in each 
case), whereas the BRT did not.

4  |  DISCUSSION

Our analysis shows that the relationship between habitat richness 
and the richness of species with conservation concern is positive 
and monotonic. Indeed, it is widely reported that a high number of 
habitats support a high number of species (Hortal et al., 2009) and 
vice versa (Jiménez- Alfaro et al., 2014). This confirms that habitat 
diversity at continental scales can be used as a pragmatic proxy for 
species richness and is thus a useful tool to assess the status of bio-
diversity conservation (Kallimanis et al., 2008; Pyšek et al., 2002; 
Saura, 2021a). We also found that geographic variables are the most 
relevant variables to shape habitat richness, while the effects of 
bioclimatic and anthropogenic variables were less evident but still 
significant.
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F I G U R E  1  Maps of habitat richness obtained by overlapping habitat distribution maps with the standard grid of 10 km × 10 km cells 
provided by the European Environmental Agency (EEA) for habitat monitoring. Greece was excluded due to the lack of habitat reporting 
(lack of habitat reporting delivery of Article 17 data in 2013). Panel a shows the habitat richness. Panel b shows normalized habitat richness
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F I G U R E  2  Boxplots showing percentages of relative influence and cumulative contribution of single and grouped explanatory variables 
in accounting for habitat richness. The contributions of variables were estimated across the GLM, GAM, and BRT models. Panel a: the 
relative influence of each explanatory variable. Panel b: the cumulative contribution for each group of the explanatory variables selected. 
Geographic variables: NORTH = northing, EAST = easting, TRI = terrain ruggedness index. Bioclimatic variables BIO_1 = mean annual 
temperature, BIO_7 = temperature annual range, BIO_12 = total annual precipitation, BIO_15 = precipitation seasonality. Anthropogenic 
variables: FRAG_IND = landscape fragmentation index, POP_DENS = human population density

F I G U R E  3  Relationships between explanatory variables and normalized habitat richness. The density of (10 km × 10 km) grid cells is 
indicated by hexagonal binning using the viridis color scale (varying from high density in yellow to low density in violet). Gray lines represent 
the 100 inflated response curves averaged across the three models used: generalized linear models (GLMs), generalized additive models 
(GAMs), and boosted regression trees (BRTs). Red lines are the median value, violet lines are the mean value of the inflated response curves. 
Geographic variables: NORTH = northing, EAST = easting, TRI = terrain ruggedness index. Bioclimatic variables: BIO_1 = mean annual 
temperature, BIO_7 = temperature annual range, BIO_12 = total annual precipitation, BIO_15 = precipitation seasonality. Anthropogenic 
variables: FRAG_IND = landscape fragmentation index, POP_DENS = human population density
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4.1  |  Geographic variables

Geographic variables showed the strongest association with habitat 
richness. We found that a major predictor of large- scale habitat rich-
ness was latitude, which is considered a proxy for other environmen-
tal variables (e.g., solar radiation and productivity; Archibald et al., 
2010, Qian & Ricklefs, 2011). This variable is widely used as a pre-
dictor of species richness and diversity (Gaston, 2007; Hillebrand, 
2004). In particular, our findings support the general tendency of 
biodiversity to decrease from lower to higher latitudes (Fine, 2015; 

F I G U R E  4  Surface plots show the interactions among the explanatory variables, x-  and y- axis represent pairs of explanatory variables 
and z- axis is the magnitude of the interaction on the response variable. Only interactions above the given threshold (|z| = 0.3) are displayed. 
Geographic variables: TRI = terrain ruggedness index, NORTH = northing and EAST = easting. Bioclimatic variables: BIO_1 = mean annual 
temperature, BIO_7 = temperature annual range, BIO_12 = total annual precipitation, BIO_15= precipitation seasonality. Anthropogenic 
explanatory variables: FRAG_IND = landscape fragmentation index, POP_DENS = human population density

TA B L E  2  Explained deviance (D2) and root mean square error 
(RMSE) of the models with and without autocovariate (“RAC”)

Model D2 RMSE

GLM 0.22 0.27

GLM with RAC 0.59 0.20

GAM 0.27 0.26

GAM with RAC 0.59 0.20

GBM NA 0.85

GBM with RAC NA 0.85
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MacArthur, 1984; Stevens, 1989). At smaller scales (i.e., national), 
Drakou et al. (2011) report a positive relationship with habitat rich-
ness for both latitude and longitude. In our study, a weak decrease of 
habitat richness was observed for longitude, probably due to lower 
habitat richness of the eastern countries, due to continentality and 
likely as a result of varying completeness in reporting the full lists of 
habitat types for some SE countries.

Habitat richness was also positively correlated with topographic 
complexity. The importance of environmental heterogeneity in con-
trolling biodiversity is widely recognized in ecological theory (Hjort 
et al., 2015; Huston, 1994; Marini et al., 2011; Stein et al., 2014). TRI 
can be considered one of the main factors contributing to explain 
habitat and species richness (López- González et al., 2015; Stein et al., 
2014; Tews et al., 2004), and its effect is expected to increase with 
spatial grain (Stein et al., 2014). Indeed, topographically complex 
areas offer a larger number and more different local conditions than 
topographically simple areas, leading to a higher number of habitat 
types packed into the same area (Stein et al., 2014). TRI contributes 
to species richness not only by providing an abundance of niches in 
space but also by offering relatively stable niches in time (Davies 
et al., 2007; Irl et al., 2015; Thuiller et al., 2006). Several studies 
showed an increase of species richness in relation to the increase of 
surface complexity (Cramer & Verboom, 2017; Farwell et al., 2021) 
and highly heterogeneous areas supporting more species than areas 
of lower heterogeneity (Hortal et al., 2009; Kallimanis et al., 2008; 
Rosenzweig, 1995).

4.2  |  Climate variable

Temperature and precipitation variables were the second most im-
portant group in explaining habitat richness. It is widely reported 
that climatic variables are considered as main drivers of broad- scale 
patterns in species richness (Grytnes & McCain, 2007; Thuiller et al., 
2004; Vetaas et al., 2019; Xu et al., 2014). We observed a positive 
association of habitat richness with annual precipitation as reported 
also for aquatic, coastal, and forest EU habitats (Drakou et al., 2011). 
Precipitation is very unevenly distributed across time (among and 
within years) and space in Europe (Rajah et al., 2014; Zolina, 2012). 
Due to climate changes, an increase in precipitation variability is ex-
pected in the near future, and this phenomenon could negatively 
affect both species and habitat diversity (Adler & Levine, 2007; 
Pearson & Carroll, 1998). Moreover, not only precipitation but other 
factors such as potential evapotranspiration (Adhikari et al., 2019) 
or soil water availability (Daws et al., 2002; Vetaas & Ferrer- Castán, 
2008) should be considered to better predict species and habitat 
distributions.

Among climate variables, mean annual temperature was the most 
strongly associated with habitat richness. Positive correlation among 
plant species richness and temperature is widely reported (Diogo 
et al., 2020; Gottfried et al., 2012), but this relationship may be re-
versed when water availability is limited (Pausas & Austin, 2001). 
Annual temperature range has a slight positive effect on habitat 

richness with a final slight decrease, highlighting the secondary role 
of temperature range in shaping species and habitat distribution 
(Austin & Niel, 2011). Interactions among climatic variables did not 
produce any strong effects as compared to the single bioclimatic 
variables. Instead, the interactions of mean annual temperature and 
mean annual precipitation with TRI suggest a positive effect on hab-
itat richness of environmental heterogeneity with both the increase 
in temperature and precipitation.

4.3  |  Anthropogenic variables

Population density is considered one of the main proxies defin-
ing human pressure on nature (Sanderson et al., 2002; Venter 
et al., 2016). Among the anthropogenic variables considered, the LFI 
showed the strongest association with habitat richness, as already 
found by other authors (e.g., Jaeger, 2000). This anthropogenic fac-
tor breaks ecological interrelations between the habitat patches 
and decreases their ability to provide various ecosystem services 
(Jaeger, 2000).

The decrease of habitat richness along with increasing human 
pressure was not as strong as expected. Indeed, environmental fac-
tors are typically more important for explaining species richness 
than human impacts (Howard et al., 2020). Moreover, the weaker 
influence of anthropogenic variables was probably due to the coarse 
resolution used in this study (Curtis et al., 2018; Niemiec et al., 2018; 
Woodbridge et al., 2020).

On the other hand, the synergistic interaction between frag-
mentation and population density had a strongly negative influence 
on habitat richness, also affecting habitat conservation (Ewers & 
Didham, 2006). This finding suggests that the interaction of anthro-
pogenic variables (Newbold et al., 2015) could be of greater impor-
tance than climate interactions (Holman et al., 2017; Lehsten et al., 
2015). Thus, land- use modification in the near future should be 
planned in order to decrease landscape fragmentation and increase 
habitat connectivity.

5  |  CONCLUSIONS AND IMPLIC ATIONS 
FOR CONSERVATION PL ANNING

The evaluation of the variables associated with habitat richness here 
performed for the first time at the European continental scale re-
vealed that geographic and climatic variables are more influential 
than anthropogenic variables for explaining habitat richness distri-
bution. Despite not showing the strongest correlations, we found 
that human activities were indeed relevant in controlling the distri-
bution of habitat richness, as the interaction among anthropogenic 
variables had a strong negative effect on habitat richness. Thus, for 
environmental management, it is important to consider the cumula-
tive effect of interactions between natural and anthropogenic vari-
ables. Indeed, increasing human populations, long- term land cover 
changes, and pressures from invasive alien species have all been 
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linked to habitat transformation (Banks- Leite et al., 2020) and bio-
diversity loss (Campagnaro et al., 2018; Cardillo et al., 2004; Chase 
et al., 2020; Davies et al., 2006; Leclère et al., 2020; Pacifici et al., 
2017). Landscape transformation and habitat degradation outside 
protected areas may also contribute to landscape fragmentation 
leading to isolated “islands” with low connectivity (Chase et al., 
2020; Keeley et al., 2018). The present study highlights how bio-
diversity policies of the EU, such as Habitats Directive, have a cen-
tral role not only in biodiversity conservation (Gameiro et al., 2020) 
but also providing continental scale data which are fundamental 
to investigate biodiversity patterns, as already demonstrated by 
Hoffmann et al. (2018) in relation to the European protected area 
network. This finding has important implications for conservation 
planning through the use of European habitat inventories originally 
created for reporting regional status of the Natura 2000 network. 
Knowing the inherent vulnerability of some habitats could aid deci-
sions regarding European conservation priorities and could form the 
basis for a biodiversity conservation roadmap (Arlidge et al., 2018).
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