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Summary 
 
The report presents the results of project Task 2.7 tackling the spatiotemporal modelling and 
the upscaling from the field to the landscape scale of five SHOWCASE core biodiversity 
indicators: wild bee abundance and species richness, spider abundance and species richness, 
and vascular plant species richness. The indicators have been modelled in five case study 
areas (CSAs) encompassing the SHOWCASE EBAs in Hungary (Kiskunság), Spain 
(Guadalquivida), Portugal (Alentejo), the Netherlands (Zuid Limburg) and Switzerland 
(Solothurn).  
 
After a brief introduction in Chapter 1 of the state of the art and the goals of Task 2.7, Chapter 
2 of the Deliverable describes the methodology adopted to model the impacts of the 
implementation of biodiversity friendly farm management, as implemented by project partners 
in the SHOWCASE EBA fields. For all the EBAs with available data for the two years of 
surveys, a set of common predictors were associated with field data, providing a harmonized 
set of covariates to be used for the spatiotemporal modelling. The set of covariates 
encompasses terrain attributes, landscape structure descriptors, indices from remote sensing 
describing vegetation and soil status, and variables describing the implementation of the 
biodiversity friendly management practices. All the predictor data used are extracted from free 
data sources resorting as much as possible to EU official data sets. To fulfill the goal of 
upscaling field results, two different data driven approaches were tested: machine learning 
algorithms, in particular Random Forest (RF), and multiple linear regressions (MLR). Based 
on a set of error indices, the most accurate model was selected for each indicator in each 
CSA. The use of the measured and modelled biodiversity indicators as proxies of ecosystem 
services provision in the five EBAs is also discussed. Data driven model results for pollinator 
abundance were compared with the outcomes of the mechanistic model of Lonsdorf et al 
(2009), and selected ecosystem services were identified based on biodiversity indicator data  
as foreseen in the description of Task 2.7.  
 
Chapter 3 of the Deliverable reports the results of the spatiotemporal modelling in each CSA 
for the five selected indicators, expressed as 0-1 interval normalized scores. In all cases MLRs 
outperformed RFs in terms of accuracy and agreement with observed data. A sixth composite 
indicator was calculated by summing and normalizing the five considered indicators. Raster 
maps at 10m resolution are presented for each indicator, for the two rounds of sampling of the 
two years under two different management scenarios: control and intervention.  A total of 240 
indicator maps were produced and analyzed. These maps provide a spatially explicit and time 
dynamic assessment of the potential impact of the implementation of biodiversity friendly 
management practices at landscape scale.  
 
Chapter 4 of the Deliverable focuses on the comparison of the mechanistic and data driven 
model results for pollinator occurrence in the five selected EBAs, focusing on the impacts of 
the different drivers in the two approaches and on the resulting spatial patterns. 
 
Chapter 5 closes the Deliverable by first comparing the biodiversity indicators modelling 
results across the five CSAs, as well as the related ecosystem services estimates and maps, 
and then summarizing the key findings of Task 2.7, providing an outlook on their further use 
for scientific analyses within SHOWCASE. 
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NDBSI Normalized Difference Bare Soil Index 
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1 Introduction 
 

Within the overall objective of SHOWCASE, i.e. to make biodiversity an integral part of 
European farming by identifying effective incentives to invest in biodiversity in diverse 
socioecological contexts, Task 2.7 contributes to an improved understanding of the spatial 
and temporal interrelations and mechanisms between the location and time of implementing 
biodiversity management and its effects on biodiversity indicators based on spatially explicit 
data. The underlying assumption is that the adoption of incentives that successfully modify 
farm management and enhance biodiversity results in land use/land cover changes that 
positively affect biodiversity indicators at different scales with an impact on the supply of 
biodiversity-based ecosystem services. Task 2.7 aimed to calibrate spatially explicit predictive 
models with classical statistical approaches (e.g. multiple linear regressions) and machine 
learning techniques (e.g. random forests) for mapping biodiversity indicators under two 
different management scenarios (i.e. implementation vs. control). To this goal, normalized 
biodiversity indicators derived from the biodiversity data collected in a group of selected EBAs 
under the two different management scenarios were used as inputs along with a uniform set 
of environmental covariates over a given spatial domain.  

These sets of predictors for each EBA were entirely derived from freely available web 
resources and were integrated with Copernicus-Sentinel 2 remote sensing indices (RSI) 
retrieved via Google Earth Engine (GEE). Remote sensing (RS) represents a precious source 
of data which are spatially explicit, cost-effective, rapidly assessed, available for almost any 
area around the globe, multi-temporal and at a spatial resolution which is feasible for most 
ecosystem services (ES) assessment applications. The number of RS applications to ES 
assessment and mapping has increased significantly in the last decade and has addressed 
mostly provisioning services, such as timber and food production, and regulatory services, 
including air quality, climate regulation, extreme events prevention and control, waste 
treatment, erosion control, biodiversity, and soil fertility (Anayu et al., 2012). A systematic 
review of literature on RS of ES is provided by de Araujo Barbosa et al. (2015) who concluded 
that data and products provided by RS alone do not have the capabilities to effectively assess 
and map the full range of ES, and therefore there is the need for an integrated approach 
through the fusion of remotely sensed data with information from other sources (del Río-Mena 
et al., 2023; Awada et al., 2022; del Río-Mena et al., 2020; Thomas et al., 2020; Zhang, 2010; 
Zhu et al., 2018).  

The use of RS products in monitoring, assessing, and mapping biodiversity is becoming 
increasingly popular due to its efficiency and high automatism (Luque et al., 2018; Wang and 
Gamon, 2019) and to the possibility to collect data and information over large areas and at a 
great frequency. Recent advancements in RS and Earth observation offer accessible and 
promising possibilities for large-scale biodiversity monitoring (Petrou et al.,2015), and provide 
extensive coverage, allowing for biodiversity upscaling from field to landscape and regional 
scales (Gamon et al., 2020). Examples range from mapping epiphytic plant communities 
(Palmroos et al., 2023) to bees and pollination related services (Galbraith et al., 2015), from 
mapping floral resources for pollinators (Gonzales, 2022) and pollination types (Feilhauer et 
al., 2016), to direct and indirect detection of insects (Rhodes at al., 2022; Wang et al., 2023).  
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Data and products provided by RS for ES assessment and mapping include, among many 
others, land cover maps for ecosystem extent, indicators of ecosystem conditions, phenology, 
NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), Leaf Area 
Index, NPP (Net Primary Production), terrain attributes such as slope, aspect and elevation, 
damage impacts and ecosystem structure (LiDAR, SAR). These data and products provide 
spatially explicit and, in the case of RSI, time-variant information that can be successfully used 
as a proxy to assess and map biodiversity indicators and their variation over time. 

In general, the assessment of ES indicators via RSI is an indirect process. This means that 
the remotely sensed information is used as a proxy for some kind of variable (e.g., biomass 
provision) which in turn is used as a proxy for the actual ES (e.g., habitat for biodiversity). 
According to literature, two different approaches are commonly used to estimate in bio-
physical units the variables which underpin the provision of a given ES. The first category 
directly uses the remotely sensed spectral signature or derived composite indexes and 
includes statistical regressions and/or radiative transfer models. The second approach uses 
RS data to generate land use/land cover classifications which are then linked to ES supply 
and used as input for physically based models of ES assessment. 

This report builds on the contents of previous deliverable reports released by SHOWCASE 
partners, D1.3 (Overview of selected SHOWCASE biodiversity indicators, Séchaud et al., 
2021), D1.2 (Experimental framework and standardized protocols for EBAs described in first 
version of a living document, Bretagnolle et al., 2021b), and D1.4 (Validated methods for 
testing reliability of landscape metrics-based biodiversity indicators, Torresani et al., 2023). 

 

2. Upscaling biodiversity indicators from plot to landscape scale: 
predictors and methodological approach  
 

2.1. Input data and target variables 
 

Among the various types of possible farmland biodiversity indicators, whose use depends on 
the scale considered, the specific context, and the expected application (Herzog and Franklin, 
2016), all EBA project partners made a selection based on the following criteria: 1) scientific 
support, 2) relevance at the European scale, 3) ease of data collection, 4) cost-effectiveness, 
5) ecological meaning and 6) relevance for stakeholders. A further distinction has been made 
between core indicators, i.e., those common to all EBAs, and optional indicators specific for 
each EBAs. The selection of biodiversity indicators to model and map focused on the following 
five core indicators:  

 Wild bees: abundance (WBA) and species richness (WBR) 
 Spiders: abundance (SpA) and species richness (SpR) 
 Vascular plants: species richness (PlaR). 

 
Wild bees are essential pollinators of farmland ecosystems, and their recent decline has 
attracted public attention and raised awareness of the link between biodiversity and ES 
(Matias et al., 2017). The factors behind their decline are multiple and complex, but habitat 



12 | Page  D2.7: Multiscale spatiotemporal modelling of biodiversity indicators 
_________________________________________________________________________ 

 

destruction, pesticide application and the loss of floral resources (and year-long availability) 
have been shown to be important (Drossart and Gérard, 2020; Goulson et al. 2015).   

Spiders are a large group of predator species, with several of them preying on agricultural 
pest insects and thus reducing crop damages (Birkhofer et al., 2018; Riggi et al. 2024). Spiders 
are sensitive to farming practices, and to vegetation composition and structure, therefore being 
good indicators of management at field level (Rusch et al., 2014). 

Farmland vascular plants are the primary producers at the basis of the food chain, being thus 
essential to the maintenance and stability of higher trophic levels. Vascular plant diversity or 
richness is particularly sensitive to field management (Moreira et al, 2023), but also to the 
presence of pollinators or seed dispersers. Therefore, vascular plants are strong indicators of 
total biodiversity across environmental gradients and broad taxonomic realms (Brunbjerg et 
al., 2018), and they are widely studied and well documented.  

 

Figure 1:  Case study areas for upscaling EBA biodiversity core indicators: Hungary (small part 
of the Bács-Kiskun county), Portugal (Evora in Alentejo Central, and Beja in Baixo Alentejo), 
Spain (Guadalquavida), Switzerland (Solothurn), and the Netherlands (Zuid-Limburg). 

The five biodiversity core indicators have been modeled and upscaled from the field to the 
landscape scale in five EBAs (Figure 1). All the EBAs with field data for the two years 2022 
and 2023 were considered, with the addition of the 2022 data from the Swiss EBA whose 
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numerosity and timely availability allowed for the analysis to be carried out in time to meet the 
deadline of the present deliverable. 

As the EBAs have been described in detail in a previous project deliverable report (Bretagnolle 
et al., 2021a), only the information necessary for the biophysical contextualization of the 
spatiotemporal dynamics of biodiversity indictors will be provided in this report. General 
information about the CSAs where the selected EBAs are located is provided in Table 1. 

Table 1: Scale of assessment, target area and land use in the five selected SHOWCASE EBAs. 

EBA Target area 
Extent of spatial 

assessment  
(and resolution) 

Elevation  
range 

(m a.s.l.) 
Target land use 

     

HU Bács-Kiskun 200.2 km2  
(10 m)  

89-105 Arable land 

ES Guadalquivida  433.2 km2 
(10 m) 

2-347 Permanent crops  
(stone fruit orchards) 

PT Municipalities of Evora, Portel, 
Cuba, Vidigueira and Beja 

567.9 km2   
(10 m) 

34-420 Permanent crops  
(olive orchards) 

NL Zuid-Limburg 170.0 km2   
(10 m) 

5-317 Arable land 

CH Solothurn  196.6 km2 
(10 m) 

321-796 Arable land 

     

 

The modeling approach tested the predictive accuracy of two distinct statistical methods: a 
“classical” approach based on multiple linear regressions (MLR), and a machine learning (ML) 
technique, i.e. Random Forest (RF) (Jordan and Mitchel, 2015; Uddin et al, 2019). Such ML 
techniques have been recently used to map different environmental variables including plant 
and animal biodiversity (Cabezas et al., 2016; Melin et al., 2019; Zhao et al., 2022). In both 
cases, the same set of predictors were used in all CSAs. This required the creation of a stack 
of raster maps of the predictors for each CSA; to this end, all rasters were harmonized in terms 
of extent and reference systems. This was the same for all CSAs, i.e., the coordinate reference 
system ETRS89-LAEA Europe, also known in the EPSG Geodetic Parameter Dataset under 
the identifier: EPSG:3035, which represents the EEA and LUCAS reference grid.  

In all CSAs, the raster stack of predictors for biodiversity indicators included the same set of 
27 variables, belonging to four different groups: 

1. Landscape elements: proximity to roads and proximity to Small Woody Features (SWF, 
Copernicus land Monitoring Services, CLMS 2018) 

2. Terrain descriptors: elevation, aspect, slope, and their derivatives (8 variables) 
3. Spectral signatures and RSI from Copernicus Sentinel 2 (14 variables) 
4. Biodiversity management (3 variables) 

 

The following table lists the predictors used for MLR calibration and RF implementation and 
their sources.  

 



14 | Page  D2.7: Multiscale spatiotemporal modelling of biodiversity indicators 
_________________________________________________________________________ 

 

Table 2: List of predictors for upscaling SHOWCASE core biodiversity indicators. 

Group  Predictor  Unit 
 

Source Resolution 

1 Road proximitya m  GIS calculation 10 m 

1 SWF proximityb m GIS calculation 10 m 

2 Elevation m a.s.l. Copernicus DEM 30 m 

2 Aspect degree from North GIS calculation 30 m 

2 Slope  % GIS calculation 30 m 

2 Catchment slope  % GIS calculation 30 m 

2 Catchment area  m2 GIS calculation 30 m 

2 Mod. Catchment area  m2 GIS calculation 30 m 

2 Topographic. wetness Index  m/rad GIS calculation 30 m 

2 Valley depth m GIS calculation 30 m 

3 BI, bare Index - Sentinel 2, GEE 20 m 

3 Blue (B2, 490 nm) - Sentinel 2, GEE 10 m 

3 Green (B3, 560 nm) - Sentinel 2, GEE 10 m 

3 IR, infra-red (B8, 842 nm) - Sentinel 2, GEE 20 m 

3 NDBSI, Norm. Diff. Bare Soil Index - Sentinel 2, GEE 10 m 

3 NDSI, Normalized Diff. Soil Index - Sentinel 2, GEE 10 m 

3 NDVI, Norm. Diff. Vegetation Index - Sentinel 2, GEE 10 m 

3 NIR, Near Infra-Red (B8A, 865 nm) - Sentinel 2, GEE 10 m 

3 Red (B4, 665 nm) - Sentinel 2, GEE 10 m 

3 SoSa, Soil Salinity  - Sentinel 2, GEE 10 m 

3 SoSI1, Soil Salinity Index1 - Sentinel 2, GEE 10 m 

3 SoSI2, Soil Salinity Index2 - Sentinel 2, GEE 10 m 

3 SoSI3, Soil Salinity Index3 - Sentinel 2, GEE 10 m 

3 SWIR Short Wave IR (B11,1610 nm) - Sentinel 2, GEE 20 m 

4 Biodiversity Intervention Dummy 0,1 EBA partners - 

4 Year of intervention Dummy 0,1 EBA partners - 

4 Round  Dummy 0,1 EBA partners - 
a Source of vector data: Open Street Map. © OpenStreetMap contributors. Available under the Open Database 
License from: openstreetmap.org.  
b Source of raster data (res. 5 m): https://land.copernicus.eu/en/products/high-resolution-layer-small-woody-
features/small-woody-features-2018. https://doi.org/10.2909/a8e683b1-2f96-45c8-827f-580a79413018  

 

Road proximity effects on forests and farmland biodiversity are well documented in the 
literature (Marcantonio et al., 2013; Fahrig et al. 2015; Bennet, 2017) due to their edge effects 
resulting in changes in the biotic and abiotic conditions, such as species composition, 
temperature, moisture, light availability, and wind speed (Delgado et al., 2007; Flory and Clay, 
2009; Watkins et al., 2003). In agricultural landscapes where most of the native vegetation 
has been removed for cultivation, semi-natural road edges are considered valuable reservoirs 
of biological diversity because they may maintain several native plant communities (Delgado 
et al., 2007; Reed et al., 1996). To account for the influence of road networks on biodiversity 
indicators, a 10m resolution raster of the proximity to roads was created for each CSA (Figure 
2) from the vector layers available from OpenStreetMap (OSM, 2021) and using GDAL 
(Rouault et al., 2024) raster analysis tools implemented in QGIS v3.22.11 (QGIS.org, 2022).  
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Figure 2: Examples of road proximity raster maps (resolution 10m) for the Dutch (left) and the 
Portuguese CSA. 

To account for the effects on biodiversity abundance and richness due to the presence of 
landscape elements such as hedgerows, woodlots, isolated trees, and tree lines in the 
agrarian landscape, the 2018 5m resolution raster provided by EEA for the whole of Europe 
(Copernicus Land Monitoring Services, 2018) provided the basis to derive 10m resolution 
proximity maps in each CSA (Figure 3). These agricultural landscape features enhance the 
natural capital and support biodiversity, providing ES such as soil protection and pollination 
(Aviron et al., 2023; Czúcz et al., 2022; England et al., 2020).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Examples of SWF proximity raster maps (resolution 10m) for the Hungarian (left) and 
the Swiss CSA. 
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The effects of local topography on biodiversity indicators were considered by including in the 
stack of predictors a set of eight terrain attributes derived from the Copernicus 30m resolution 
digital elevation model (DEM, Copernicus 2018) available for all CSAs (Figure 4). Topography 
is an important non-zonal factor affecting biotic and abiotic factors, with effects on vegetation 
patterns and characteristics (Yang and Da, 2006), species distribution (Cantón, 2004), and 
pollinator species richness (Le Clec'h et al., 2019), due to variations in natural illumination, 
temperature, moisture, and soil properties (Bennie et al., 2008, Carletti et al., 2008; Gong et 
al., 2008). The predictors derived from the DEM include aspect, slope, catchment slope, 
catchment area, modified catchment area, topographic wetness index, and valley depth 
(Boehner, and Selige, 2006), and were computed resorting to SAGA-GIS tools implemented 
in QGIS (Conrad et al., 2015).  

 

  

 

 

    

 

 

 

 

 

 

 

 

Figure 4: Examples of DEM derivates raster maps (resolution 30m) for the Spanish CSA: top-left 
elevation, top-right slope, bottom-left valley depth, and bottom-right topographic wetness index. 

The third group of predictors is represented by time-dependent RS data. Using GEE (Gorelick 
et al, 2017) JavaScript API, available at the URL https://code.earthengine.google.com/, the 
vector layer with the boundary of each CSA was imported as an ESRI format shape file (EPSG 
4326). As field surveys in each EBA occurred twice per year, a four-week time frame was set 
for each round of sampling to extract the required spectral bands. These were further used to 
calculate soil and vegetation RSI, such as the NDVI (Figure 5). For each band, it was possible 
to specify not only the time frame of interest and the % of cloud cover tolerance but also the 
statistics relevant to the goal of the assessment (e.g. median value, mean value, maximum).  
To upscale the SHOWCASE biodiversity core indicators, raster maps of monthly median 
values of RS images were extracted for each CSA, considering the time frame set by the two 
rounds of sampling and setting the cloud pixel percentage <10%. The following spectral bands 



D2.7: Multiscale spatiotemporal modelling of biodiversity indicators  17 | Page 
_________________________________________________________________________ 
 

 

were extracted for each sampling round each year (four weeks median value):  B2 (blue, 
central wavelength 490 nm), B3 (green, central wavelength 560 nm), B4 (red, central 
wavelength 665 nm), B8 (IR, central wavelength 842 nm), B8A (IRn, central wavelength 865 
nm) and B11 (SWIR, central wavelength 1610 nm). The first four have a 10m spatial 
resolution, while the last two have a 20m spatial resolution. The above listed bands were used 
within the GEE JavaScript to calculate the following RSIs (Figure 3): NDVI, NDBSI 
(Normalized Difference Bare Soil Index), NDSI (Normalized Difference Soil Index), BI (Bare 
Index), SoSI1 (Soil Salinity Index 1), SoSI2 (Soil Salinity Index 2), SoSI3 (Soil Salinity Index 
3), and SOSA (SOil Salinity). 

 

Figure 5. GEE JavaScript console: example of RSIs computation for May 2023 in the Portuguese 
EBA of Alentejo. 

Examples of vegetation (NDVI) and soil (NDBSI) RSI are displayed in Figure 6 for the 
Portuguese and the Hungarian CSAs. 

The last group of predictors is represented by 0-1 dummy coded variables to account i) for the 
effect of biodiversity management on the measured indicators, i.e. control vs. intervention 
providing in this way two different biodiversity management scenarios to compare, ii) for the 
sampling round (i.e., seasonal variability), and iii) for annual variability. In this way it is possible 
to assess not only the effect of treatment over the considered spatial domain, but also to 
explicitly account for variation over time and possibly forecast future trends by using the time 
variant RSI.   
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Figure 6.  NDVI (1st and 3rd row) and NDBSI (2nd and 4th row) maps for round 1 and 2 in years 2022 
and 2023 in the Portuguese (upper two rows) and Hungarian (bottom two rows) CSAs. 
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Before the spatial joining with the predictors, the experimental field data from each EBA were 
transformed into 0-1 indicator data resorting to an interval normalization (or min-max scaling) 
which returns data within a 0 to 1 interval (Wu et al., 2013): 

Indi = (xi-max) / (max-min)                                                                                              Eq. (1) 

where Indi is the normalized [0-1] value of the abundance or richness indicator, xi is the actual 
value (i.e. the individuals or the species count in any specific field), max and min are the 
maximum and the minimum respectively of each variable observed in the dataset. The formula 
in Eq. (1) gives high priority (i.e. values close to 1) to higher values of the considered indicator; 
the lowest value, 0, does not necessarily indicate that no individuals or species were observed, 
but that it is the lowest in the considered area at the time of samples collection. This data 
transformation was preferred to standardization as it preserves the original distribution of the 
data and retains the linear relationship between original and transformed values (Cabello-
Solorzano et al, 2023). Also, constraining data within a 0-1 interval allows for immediate 
comparisons among indicators across scenarios, locations and different moments in time. 

Figure 7 illustrates the flowchart of the mapping approach followed in Task 2.7, from raster 
data acquisition to the generation of upscaled maps of standardized biodiversity indicators. 

 

Figure 7.  Flowchart illustrating the steps of biodiversity indicators assessment and mapping 
resorting to Remote Sensing Indices and time-invariant covariates. 
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2.2 Comparing model performance: MLR vs. RF 
 
In each EBA two statistical methods were tested to identify which could better provide spatial 
estimates of the SHOWCASE core biodiversity indicators at the landscape scale. Multiple 
linear regressions (MLR) were calibrated resorting to a sequential replacement approach. This 
consists of iteratively adding and removing predictors in the model to identify a subset of 
predictors resulting in the best performing model, i.e. a model with the lowest prediction errors. 
There are three possible strategies of stepwise regression (James et al. 2013; Bruce et al, 
2020): 

1. Forward selection, which starts with an intercept but no predictors in the model, iteratively 
adds the most contributive predictors, and stops when the improvement is no longer 
statistically significant. 

2. Backward selection (or backward elimination), which starts with all predictors in the model 
(full model), iteratively removes the least contributive predictors, and stops when you have 
a model where all predictors are statistically significant. 

3. Stepwise selection (or sequential replacement), which is a combination of forward and 
backward selections. It starts with no predictors, then sequentially adds the most 
contributive predictors (like forward selection). After adding each new variable, it removes 
any variables that no longer provide an improvement in the model fit (like backward 
selection). 

The third strategy was adopted and the underlying assumptions of MLR were checked by 
inspection of bivariate scatterplots of the variables of interest and by checking the normality of 
regression residuals.  

Random forests were implemented in R v.4.3.2 (R Core Team, 2013) using Rstudio 2023.06.0 
(RStudio Team, 2020) and the package ‘randomForest’ version 4.7-1.1 (Liaw and Wiener 
2002). Each forest ensemble was composed of 500 regression trees, and for each ensemble 
an extractor function for variable importance measures was applied based on the total 
decrease in node impurities from splitting on the variable, averaged over all trees. This allowed 
us to assess and plot the predictive power of each variable.  

Calibration errors for MLR and RF were assessed by calculating the values of mean error 
(ME), absolute error (AE), rooted mean squared error (RMSE), index of agreement (IoA) and 
R2.  The IoA (Willmot, 1981) is a standardized measure of the degree of model prediction error 
which varies between 0 and 1, and is calculated as follows:  

   

𝐼𝑜𝐴 =  1 −
∑ (ை೔ି௉೔)మ೙

೔సభ

∑ (|௉೔ି ைത|ା|ை೔ିைത|)మ೙
೔సభ

                                                                             Eq. (2)                                                                                        

where Oi is the observation value and Pi is the predicted value and Oഥ is the average 
observation values. The index of agreement represents the ratio of the mean square error and 
the potential error. The agreement value of 1 indicates a perfect match, and 0 indicates no 
agreement at all. The index of agreement can detect additive and proportional differences in 
the observed and simulated means and variances; however, IoA is overly sensitive to extreme 
values due to the squared differences.  
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2.3. Application of mechanistic models for pollinator abundance 
 

A plethora of models is available to relate environmental conditions to biodiversity levels. 
However, there are trade-offs between their complexity, the information required to 
parameterize them, and the kind of outputs they can provide. Task 2.7 compared two 
conceptually different modelling approaches: (i) data-driven models i.e. statistical approaches 
calibrated on the biodiversity indicator data from 5 EBAs and (ii) the mechanistic model of 
Lonsdorf et al. (2009) as implemented in Zulian et al. (2013) to estimate pollinator abundance 
using the k.explorer interface (IMP, 2023). The model output is a dimensionless score with 
values ranging from 0 to 1, describing the expected relative pollinator abundance to a given 
location across the landscape. The model relies on the assessment of nesting and foraging 
suitability of the landscape for pollinators, calculated using expert assessment and available 
land cover maps, expressed in the form of lookup tables that link land cover types with the 
availability of floral and nesting resources. From the combination of nesting and foraging 
suitability a habitat suitability map for relative pollinator abundance at the landscape scale is 
derived. This is in turn corrected by an estimation of insect activity based on average 
temperature and solar radiation, which when below a certain threshold affect pollinator 
abundance outside the nesting sites (Figure 8).  

 

 

 

 

 

 

 

 

 

 

Figure 8.  Flowchart outlining the structure of the pollination model which results in the 
calculation of the relative pollinator abundance for the Alentejo CSA (Portugal). 

The climatic data used for the assessment were derived from WorldClim v2.1, with a 30s 
resolution (Fick et al., 2017) The land cover dataset plays a major role in determining model 
outcomes. Table 3 presents an example of land cover ranking table where each land cover 
type has a score from 0 to 1, according to its potential to provide floral and nesting resources. 
The last available vector layer version of the CORINE Land Cover (2018) was used. This 
model and its modifications have already been used to infer spatially explicit current (Koh et 
al., 2016; Zhao et al., 2019) and future trends in pollinators/pollination (Chaplin-Kramer et al., 
2019) and to estimate pollinator natural capital (Ricketts and Lonsdorf, 2013).  
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The pollinator abundance estimated with the mechanistic model in each CSA was eventually 
compared for the target land use with that resulting from the application of the data-driven 
models calibrated with the observations of pollinator abundance from each EBA for the control 
sites. The relative differences were then assessed over the target land use in the whole area 
and mapped to highlight the magnitude and sign of the differences between the two 
approaches in a spatially explicit context. 

Table 3: Examples of Floral Availability (FA) and Nesting Suitability (NS) scores for the CORINE 
Land Cover (CLC) types. HNV_F+/HNV_N+: high natural value farmland (additional scores). 
From: Zulian et al., 2013 
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2.4. Biodiversity indicators as proxy for ecosystem services 
assessment and mapping 

 

As foreseen in the GA, Task 2.7 investigated the scale dependency of spatial patterns and 
temporal dynamics of the selected biodiversity indicators and their relations with 
environmental and anthropic drivers. The biodiversity indicators selected provide the basis to  
assess ecosystem services provision under the two different management scenarios, i.e. 
control and intervention, at landscape scale. The five available biodiversity indicators 
stemming from the EBAs field surveys, were then used as proxies for specific ecosystem 
services allowing the estimation and mapping of their potential supply.  

In the following paragraphs a brief literature review is provided to highlight the use of 
biodiversity indicators as proxy of ecosystem service provision. 

Using pollinators abundance as a proxy for pollination ecosystem service provision is a 
common approach in ecological studies. Garibaldi et al. (2013) examined the relationship 
between pollinator abundance (including wild bees and honeybees) and crop pollination 
services. It was found that higher pollinator abundance, particularly of wild bees, was strongly 
correlated with increased fruit set in crops, demonstrating its use as a proxy for pollination 
service provision. The role of pollinator abundance in ensuring pollination services for global 
food production was highlighted by Klein et al. (2007) who used pollinator abundance data to 
estimate pollination service provision across different landscapes and crops in intensively 
managed agricultural systems. In heterogeneous landscapes with diverse habitats, Ricketts 
et al. (2008) synthesizing the results of 23 studies found that pollinator abundance was a 
reliable indicator of pollination service provision, and in their review paper Potts et al. (2016) 
highlighted that pollinator abundance was a critical indicator for evaluating the health of 
pollination ecosystems and their services. Ollerton et al. (2014) remarked that declines in 
pollinator abundance were directly linked to reduced pollination services, emphasizing the 
importance of monitoring pollinator populations, particularly in the context of climate change 
and habitat loss. The global meta-analysis by Dainese et al. (2019) used pollinator abundance 
as a proxy to quantify the contribution of biodiversity to crop pollination services across diverse 
agricultural systems, highlighting its robustness as strong proxy of pollination services.  

Pollinators species richness is also commonly used as a proxy for pollination service 
provision, often alongside or in combination with pollinator abundance. While abundance 
measures the number of individual pollinators, species richness reflects the diversity of 
pollinator species present in an ecosystem. Both metrics are important because they capture 
different aspects of pollinator communities that contribute to pollination services. Garibaldi et 
al. (2011) found that higher pollinator species richness was associated with more stable and 
efficient pollination services, particularly in agricultural landscapes and that species richness 
was a better predictor of pollination stability than pollinator abundance alone, as diverse 
pollinator communities provided functional redundancy. Similarly, Fründ et al. (2013) 
highlighted that pollinator species richness enhanced pollination services through functional 
complementarity, where different species contributed unique pollination behaviors, showing 
that species richness was a key driver of pollination efficiency, as diverse communities filled 
more ecological niches. used historical data to show that declines in pollinator species 
richness were associated with reduced pollination services in natural and agricultural 
ecosystems. In a study using historical data, Bartomeus et al. (2013) found that species 
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richness was a reliable indicator of pollination service provision over time and that declines in 
pollinator species richness were associated with reduced pollination services in natural and 
agricultural ecosystems. The relevance of pollinator species richness at regional scales was 
pointed out by Winfree  et al. (2018), showing that diverse pollinator communities provided 
more consistent pollination services across different locations and times and that species 
richness was critical for maintaining pollination services in spatially and temporally variable 
environments. In the already cited global meta-analysis, Dainese et al, (2019) remarked that 
species richness was a critical factor in ensuring effective pollination services across diverse 
agricultural systems, adding that higher pollinator species richness significantly increased crop 
yield and quality, independent of pollinator abundance. All these studies highlighted how the 
relevance of species richness in the provision of pollination services derives from different  
factors:  

i) functional complementarity: different pollinator species often have unique behaviors 
(e.g., flower preferences, foraging times, or pollination techniques) that collectively enhance 
pollination efficiency;  

ii) resilience: diverse pollinator communities are more resilient to environmental 
changes, ensuring stable pollination services even if some species decline; and 

iii) niche partitioning: species richness allows for better utilization of available floral 
resources, reducing competition and increasing overall pollination success. 
 
In general, then, it can be concluded that pollinator abundance  is often used to measure the 
quantity of pollinators, which is important for high-density flower visitation, while species 
richness captures the diversity of pollinators, which is crucial for ensuring pollination across 
different plant species, times, and environmental conditions. Both metrics are complementary 
and were often used together to provide a more comprehensive understanding of pollination 
service provision.  

Spiders are important natural enemies of pests in agricultural and natural ecosystems 
(Reichert and Lockley, 1984), and their abundance and species richness have been often 
used as proxies for pest control regulating ecosystem services. Snyder and Wise (2001) 
examined the role of spider abundance and diversity in controlling herbivorous pests in 
agricultural fields. They found that higher spider abundance reduced pest populations, while 
species richness enhanced the stability of pest control over time, showing that both spider 
abundance and species richness were important for effective pest control, with species 
richness providing functional redundancy and resilience. Schmidt et al. (2003) investigated 
the role of spider abundance and diversity in controlling pest populations in cereal crops, 
where both metrics were positively correlated with reduced pest damage and increased crop 
yield, concluding that spider abundance and species richness were complementary proxies 
for pest control services. In assessing the importance of spider abundance and species 
richness in controlling pest populations across different agroecosystems in Europe and the 
US, Nyffeler and Sunderland (2003) concluded that diverse spider communities were more 
effective at pest suppression than single-species dominance as they jointly enhanced the 
stability and effectiveness of pest control services. The influence of local management and 
landscape complexity on spider abundance and species richness was investigated by Saqib 
et al. (2020), who found that complex landscapes supported higher spider diversity, which in 
turn enhanced pest suppression.  



D2.7: Multiscale spatiotemporal modelling of biodiversity indicators  25 | Page 
_________________________________________________________________________ 
 

 

As for pollinators, both spider abundance and species richness are widely used as proxies for 
pest control services in agroecosystems: while abundance provides a direct measure of 
predation pressure, species richness enhances the stability, efficiency, and resilience of pest 
control. Studies often recommend promoting both metrics through habitat management (e.g., 
maintaining semi-natural habitats, reducing pesticide use) to optimize pest control services. 

The fifth and last biodiversity core indicator surveyed in the SHOWCASE EBAs and addressed 
in this Deliverable report is vascular plants species richness. This indicator  has often been 
used as a proxy for the supply of various ecosystem services, as plant diversity plays a critical 
role in maintaining several ecosystem functions. Here follow some examples from the scientific 
literature where vascular plant species richness has been used to represent ecosystem 
service supply. For example, Hector et al. (1999) simulated the impact of loss of plant diversity 
on primary productivity (provisioning service)  by synthesizing grassland communities with 
different numbers of plant species. Results differed in detail at the eight European sites tested, 
but there was an overall log-linear reduction of average aboveground biomass with loss of 
species. In their synthesis paper Hooper et al. (2005) emphasized the importance of vascular 
plant species richness for ecosystem services such as primary production, decomposition, 
and nutrient cycling, with higher plant species richness enhancing the efficiency and stability 
of ecosystem services provision. From the meta-analysis of experimental works (N = 466) 
spanning 50 provided by Balvanera et al. (2006), it resulted that vascular plants species 
richness was positively correlated with ecosystem services such as biomass production, soil 
fertility, and pest regulation, making it a robust proxy for ecosystem services supply across a 
wide range of ecosystems. Díaz et al. (2007) investigated the role of plant diversity in 
maintaining ecosystem multifunctionality, focusing on regulating services such as pollination 
support, soil fertility, and water regulation, and emphasizing the role of plant diversity in 
maintaining ecosystem multifunctionality in natural and semi-natural environments. Plant 
functional composition proved also to be a key driver of soil-based ecosystem services, as 
highlighted by Fornara and Tilman (2008) who found that diverse plant communities enhanced 
soil carbon storage and nitrogen availability, representing then a proxy for carbon 
sequestration and soil nutrient cycling services, with higher plant diversity leading to greater 
soil carbon and nitrogen accumulation in agriculturally degraded soils. Focusing on grasslands 
and other herbaceous ecosystems, Zavaleta et al. (2010) and Lavorel et al. (2011) 
demonstrated that vascular plant species richness was essential for maintaining multiple 
ecosystem services, including forage production, soil fertility, water regulation and carbon 
storage. Both works emphasized that higher plant diversity supports greater functional 
diversity, which underpins ecosystem service provision. 

Vascular plants species richness underpins then the supply of different categories of 
ecosystem services, including both provisioning and regulating services. The former 
encompass biomass production, forage provision, and genetic material, while the latter include 
nutrient cycling and regulation of soil quality, regulation of water quality, and soil erosion 
control.  Furthermore, plant diversity provides habitat for other organisms, supporting 
biodiversity and associated services like pollination and pest control. Habitat provisioning, and 
the biodiversity within, is considered a type of “supporting” ecosystem service (Maes, 2012; 
Bastian, 2013), but this category is not explicitly considered in all ecosystem services 
classification scheme, the most notable example being provided by the Common International 
Classification of Ecosystem Services (CICES, Haines-Young and Potschin, 2018), whose 
hierarchically structured classification is one of the most used in the scientific literature.  In the 
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CICES framework, supporting services or ecological functions are considered as the 
underpinning structures and processes that ultimately give rise to ecosystem services. A 
classification of these supporting services is not covered in CICES which seeks to identify the 
final services that link to the goods and benefits that are valued by people. 

According to the CICES scheme version 5.1, currently under revision, the biodiversity 
indicators derived from the SHOWCASE EBAs survey can provide proxies for the following 
ecosystem services:   

i) Wild bees’ abundance and species richness indicators: proxies for pollination 
(regulation and maintenance - biotic  ecosystem service, CICES v5.1 code 2.2.2.1); 

ii) Spiders’ abundance and species richness indicators: proxies for pest control 
(regulation and maintenance - biotic  ecosystem service, CICES v5.1 code 2.2.3.1); 

iii) Vascular plants species richness indicator: in this case as none of the possible 
ecosystem services (three provisioning services and seven regulation and 
maintenance according to the CICES classification) linked to plant species 
richness has been monitored in the SHOWCASE EBAs fields, it is considered more 
appropriate within the SHOWCASE project framework to use this indicator as a 
proxy for the supporting ecosystem service of habitat provision for biodiversity. 
 

The spatiotemporal modelling and mapping of the five core biodiversity indicators provided 
then straightforward all the information and outputs necessary to assess and map the related 
ecosystem services: pollination and pest control regulation services are complementary 
depicted by the spatiotemporal joint mapping of abundance and species richness of wild bees 
and spiders respectively, both indicators being combined in a single 0-1 normalized indicator 
of ES provision, i.e. the two indicators are summed and then normalized, while indicator maps 
of vascular plants species richness provide the spatiotemporal modelling outputs for the 
supporting ecosystem service of habitat provision for biodiversity.  
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3. Upscaling biodiversity indicators from plot to landscape scale: 
results for five SHOWCASE EBAs 
This section of the report illustrates the results of the spatiotemporal modelling of biodiversity 
indicator data for the five selected SHWOCASE core indicators in five EBAs: Hungary, Spain, 
Portugal, the Netherlands and Switzerland. All the data at the base of the analysis and 
modelling were provided by the SHOWCASE EBA partners and have been collected between 
2022 and 2023 following the SHOWCASE biodiversity survey protocol (Bretagnolle et al., 
2021b). In the case of the Dutch EBA, data were available also for 2021, while of the Swiss 
EBA data were available only for 2022. Data were provided in the form of excel files with a 
standardized format used in all EBAs (Figure 9). For all data points coordinates were provided 
in the EPSG 4326 reference system (WGS84). 

  

Figure 9.  Example of standard excel data sheet for field observations with individual and 
species counts. 

The data collected by EBA partners were first processed to calculate the sums of individuals 
and the number of species recorded in each field (control and intervention) in each EBA for 
every round of sampling and for the two years. The detailed description of the intervention in 
each EBA is given by Bretagnolle et al. (2021a). In the case of arable land (i.e. HU, NL and 
CH EBAs), to account for margin effects and for the presence of the floral strips at the verge 
of the intervention fields on biodiversity indicators, the observations from each field/round were 
divided into two groups, the first next to the field verge and the second referred to the center 
of the field. In the case of permanent crops (ES and PT EBAs) this division was not applicable 
as the interventions (i.e. flower strips) are localized in between the orchard rows.   

The data (individuals sums and number of species) were then 0-1 normalized and joined with 
the set of predictors described in the previous section based on their coordinates to be 
analyzed for the spatiotemporal modelling. 

The following sub-sections present the main results for upscaling the field scale observations 
in each EBA to the landscape scale in the corresponding CSA. 

 

  



28 | Page  D2.7: Multiscale spatiotemporal modelling of biodiversity indicators 
_________________________________________________________________________ 

 

 

3.1 Hungarian EBA 
 

The Hungarian CSA encompassing the EBA fields is in Central Hungary, in the Kiskunság 
area, in the Hungarian part of the Danube-Tisza valley (Figure 10). The area has an extent of 
ca. 20,000 ha with an elevation ranging from 89 to 105 m a.s.l., and stretches for ca. 30 km in 
the North-South direction, parallel to the course of the Danube River to the west, and is 
bordered to the east  by the 35,722 ha Natura 2000 area of the Saline lakes of Kiskunság and 
the Turján region of Őrjeg (Kiskunsági szikes tavak és az őrjegi turjánvidék, HUKN10002) 
which occupies ca. 4596 ha of the south-eastern part of the CSA.  

 
Figure 10. Geographical location of the Hungarian CSA. 

The Natura 2000 site includes four shallow open water sodic-alkaline pans, three major sodic-
alkaline reedbeds and an associated mosaic of saline marshes, meadows, aquaculture ponds 
and irrigated land. It is the largest and most important area of saline lakes and flats between 
the Danube and Tisza rivers in the Great Hungarian Plain. The Site supports notable species 
of breeding, migrating, wintering and resident birds, including the great bustard (Otis tarda), 
pied avocet (Recurvirostra avosetta), Eurasian bittern (Botaurus stellaris) and red-breasted 
goose (Branta ruficollis). It hosts several noteworthy plant species and communities endemic 
to the Pannonic biogeographic region, including Aster tripolium ssp. pannonicus. The lakes 
play an important role in the retention and storage of water and the regulation of the 
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groundwater level in the surrounding area. Currently the Site is mainly used as extensive 
grassland, and for reed harvesting and other agricultural activities. According to CORINE Land 
Cover (2018), agricultural land occupies 85.5% of the CSA, with 81% of non-irrigated 
agricultural land (13861 ha), 15.0% of extensive grassland (2993 ha), 0.51% of areas with 
complex cultivation patterns (102 ha), and 0.73% of areas principally occupied by agriculture, 
with significant areas of natural vegetation (147 ha). 

Following the SHOWCASE sampling protocol, the core indicator data were collected in two 
rounds (May and July) in 2022 and 2023 from eight control fields and eight intervention fields. 
Plant richness was sampled only once every year (in late spring-early summer). The 
descriptive statistics of the five biodiversity indicators for the two years are summarized in 
Table 4 for individual and species counts and their 0-1 normalized indicators. 

 
Table 4: Descriptive statistics of the five SHOWCASE core indicators  

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max 
Counts               
WBA 128 4.8 5.5 0.5 0.0 3.0 34.0 
WBR 128 2.4 2.4 0.2 0.0 1.5 12.0 
SpA 128 8.5 11.8 1.0 0.0 4.0 81.0 
SpR 128 1.6 2.6 0.2 0.0 1.0 19.0 
PlaR 64 15.6 11.8 1.5 0.0 12.5 46.0 
Indicator (0-1)               
Ind WBA 128 0.200 0.223 0.020 0.000 0.118 1.000 
Ind WBR 128 0.284 0.274 0.024 0.000 0.191 1.000 
Ind SpA 128 0.171 0.221 0.020 0.000 0.092 1.000 
Ind SpR 128 0.242 0.337 0.030 0.000 0.108 1.000 
Ind PlaR 64 0.338 0.271 0.034 0.000 0.263 1.000 

 

Table 5 summarizes the descriptive statistics of the five normalized indicators for control and 
intervention; statistically significant differences (p< 0.05) in indicator mean values were 
detected for WBA, WBR, and PlaR indicators, but not for SpA and SpR, which showed higher 
mean values observed for the control fields and lower for the intervention fields. Likewise, in 
terms of location along the transect, mean indicator values were significantly higher at the field 
margins than in the field center for WBA (0.282 vs. 0.117), WBR (0.414 vs.0.155) and PlaR 
(0.530 vs. 0.147) but not for spiders, although both mean SpA and SpR indicators were higher 
at the field margins (0.194 and 0.272) than in the field center (0.148 and 0.210). The same 
responses were observed in both control and intervention fields with significantly higher mean 
indicator values for WBA, WBR and PlaR at the field margins. Mean indicator values for the 
second sampling round were higher in the control fields for WBA, WBR and SpR, while in the 
intervention fields the increase was observed only for WBR and SpR.  Wild bee abundance 
appears constant in the two years of observation, while there was an increase in wild bee 
richness in the second year, and this was observed in both control and intervention fields. In 
2023 spider abundance increased in both control and intervention fields with respect to 2022, 
while the number of species dropped in the control fields while remaining constant in the 
intervention fields. In the two years, the number of vascular plants species remained constant 
in the control fields, while in the intervention fields there was a clear increase in 2023, although 
not statistically significant. 
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Table 6 summarized the MLR coefficients for the normalized biodiversity indicators. Given the 
geomorphology of the plain, regressors based on terrain attributes were not used, as a much 
more detailed DEM with a higher resolution (<1 m) would have been necessary to properly 
account for the influence of topography on biodiversity indicators. 

 Table 5: Descriptive statistics of the five SHOWCASE core indicators in the control and 
intervention fields of the Hungarian EBA  

 Indicator Treatment Means N Std.Dev. Std.Err. Min Median Max 
Ind WBA Control 0.153 64 0.188 0.023 0.000 0.088 1.000 
 Intervention 0.246 64 0.245 0.031 0.000 0.172 1.000 
 All Groups 0.200 128 0.223 0.020 0.000 0.118 1.000 
Ind WBR Control 0.206 64 0.234 0.029 0.000 0.143 1.000 
 Intervention 0.362 64 0.290 0.036 0.000 0.364 1.000 
 All Groups 0.284 128 0.274 0.024 0.000 0.191 1.000 
Ind SpA Control 0.198 64 0.253 0.032 0.000 0.097 1.000 
 Intervention 0.143 64 0.181 0.023 0.000 0.080 1.000 
 All Groups 0.171 128 0.221 0.020 0.000 0.092 1.000 
Ind SpR Control 0.270 64 0.352 0.044 0.000 0.111 1.000 
 Intervention 0.213 64 0.321 0.040 0.000 0.105 1.000 
 All Groups 0.242 128 0.337 0.030 0.000 0.108 1.000 
Ind PlaR Control 0.233 32 0.130 0.023 0.000 0.232 0.450 
 Intervention 0.443 32 0.332 0.059 0.000 0.400 1.000 
 All Groups 0.338 64 0.271 0.034 0.000 0.263 1.000 

 

Table 6: Coefficients of the MLR calibrated for the normalized biodiversity indicators; significant 
coefficients in red (p <0.05) and blue (p<0.10) 

Predictor WBA WBR SpA SpR PlaR 
Intercept -5.76193 -0.41323 0.78523 0.69980 -0.10635 
Dummy Treat 0.10016 0.17230 -0.00307 -0.05351 0.22816 
Dummy Round  0.08937 0.04676 0.28064  
Dummy Year  0.10831 0.03423 -0.04742 0.06028 
Road prox  -0.00033 -0.00011 -0.00032 -0.00008 
SWF prox -0.00012 -0.00009 0.00013 0.00014 -0.00001 
BI -7.66281   18.47382  
blue -0.00208 -0.00059  0.00050  
green 0.00418   0.00023  
IR -0.00142  0.00027 0.00049 -0.00134 
Irn    -0.00194  
NDBSI 4.58230 -3.06751 -1.95857 -1.15849 6.46509 
NDSI 1.22442 4.50094 2.99775 -10.68093 1.84071 
NDVI 6.79444  -3.33803 11.37421 10.39707 
red 0.00584  -0.00031   
SOSA  0.00048   0.00215 
SOSI2 -0.00064 0.00022 0.00014 -0.00171 -0.00096 
SOSI3 -0.00009     
SWIR   -0.00021 0.00019 -0.00108 
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Adopting the same set of predictors, random forests were calibrated for each indicator, 
providing an assessment of the relevance of each predictor expressed in terms of node purity, 
i.e. the capacity of each predictor to split the regression tree with an increase in homogeneity 
in the data partitions (Table 7). The contribution of each predictor is graphically represented 
in Figure 11, with order of relevance increasing along the Y axis. 

Table 7: Relevance of RF predictors for the five biodiversity indicators in term of node purity; 
colors highlight the most relevant predictors (orange > brown >light brown) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. RF variable contribution plots for WBA (top left), WBR (top left), SpA (bottom left) and 
SpR (Bottom right) indicators. 

Predictor

NodePurity Rel.% NodePurity Rel.% NodePurity Rel.% NodePurity Rel.% NodePurity Rel.%

dummy treat    0.063 1.58% 0.293 4.39% 0.025 0.72% 0.121 1.13% 0.286 8.44%

dummy year    0.041 1.03% 0.054 0.81% 0.026 0.77% 0.240 2.24% 0.019 0.55%

dummy round   0.032 0.81% 0.089 1.34% 0.048 1.40% 0.509 4.74% 0.000 0.00%

swf_prox      0.267 6.74% 0.429 6.43% 0.141 4.11% 0.734 6.84% 0.267 7.88%

road_prox      0.251 6.32% 0.838 12.54% 0.206 6.01% 0.525 4.90% 0.366 10.83%

bi             0.188 4.74% 0.280 4.19% 0.162 4.73% 0.442 4.12% 0.202 5.98%

blue         0.227 5.72% 0.373 5.59% 0.152 4.44% 0.752 7.01% 0.143 4.24%

green         0.258 6.49% 0.335 5.02% 0.179 5.24% 0.808 7.53% 0.173 5.11%

ir             0.215 5.41% 0.359 5.38% 0.230 6.73% 0.524 4.89% 0.165 4.88%

irn            0.274 6.90% 0.449 6.73% 0.239 6.98% 0.511 4.76% 0.174 5.15%

ndbsi          0.206 5.20% 0.377 5.64% 0.192 5.61% 0.440 4.10% 0.295 8.72%

ndsi           0.193 4.85% 0.338 5.05% 0.145 4.24% 0.672 6.26% 0.189 5.59%

ndvi          0.243 6.13% 0.343 5.14% 0.318 9.29% 0.607 5.66% 0.207 6.13%

red           0.210 5.28% 0.320 4.79% 0.235 6.86% 0.722 6.73% 0.171 5.05%

sosa           0.265 6.67% 0.286 4.28% 0.260 7.61% 0.699 6.51% 0.120 3.54%

sosi1          0.256 6.44% 0.346 5.17% 0.214 6.26% 0.710 6.62% 0.124 3.65%

sosi2          0.315 7.94% 0.437 6.54% 0.264 7.71% 0.504 4.70% 0.162 4.79%

sosi3          0.231 5.83% 0.374 5.60% 0.207 6.06% 0.700 6.53% 0.126 3.74%

swir           0.234 5.91% 0.358 5.36% 0.178 5.21% 0.507 4.73% 0.195 5.75%

WBA Indicator WBA Indicator SpA Indicator SpR Indicator PlaR Indicator
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It is worth noting that some predictors are relevant in both approaches, e.g. proximity to the 
field margins or to small woody features and RS soil salinity indicators, while the dummy coded 
management predictors were the least powerful in the RF approach, being instead highly 
significant in the MLR approach. The only notable exception is given by the PlaR indicator 
whose treatment dummy variable ranked third in terms of predictive power in the RF approach 
and was also highly significant in the MLR approach. 

Table 8: Calibration error indices for the MLR and RF predictive models for the five biodiversity 
indicators 

Error WBA Indicator WBR Indicator SpA indicator SpR Indicator PlaR Indicator 
indices RF MLR RF MLR RF MLR RF MLR RF MLR 

ME -0.025 -0.001 0.002 -0.003 0.052 0.000 -0.034 -0.005 -0.116 -0.008 
MSR  0.050 0.013 0.070 0.038 0.053 0.009 0.136 0.038 0.055 0.050 
RMSE 0.252 0.116 0.277 0.195 0.258 0.093 0.311 0.194 0.267 0.223 
R2 0.085 0.392 0.078 0.406 0.266 0.306 0.077 0.570 0.282 0.463 
IoA 0.111 0.711 0.284 0.671 0.279 0.638 0.504 0.834 0.154 0.763 

 

Table 8 summarizes the calibration error for the predictive models built with the MLR and the 
RF approach; from the values in the table, it appears clearly that in this case, and for all 
indicators, MLR models outperform RF with systematically lower ME, MSR, RMSE and higher 
values of IoA and R2 (Figure 12). 

 
Figure 12: Calibration error indices for the MLR and RF predictive models for the five biodiversity 
indicators 

The MLR models were then used to assess and map the five biodiversity indicators over the 
entire agricultural land area and raster statistics were calculated for each map to assess the 
average relative changes with respect to the baseline situation (year 1, control) and for each 
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round the relative change due to the treatment implementation over the whole area. Although 
not realistic, this assessment provides a quantitative, spatially explicit and time dynamic 
evaluation of the potential impact of the biodiversity management practice implemented in the 
EBA. Figure 13 illustrates the spatial distribution of the WBA indicator for control and 
intervention scenarios during the two rounds in the two years. Table 9 reports the raster 
statistics for each map and summarizes the relative changes with respect to the baseline and 
to the control of each round. 

 

Figure 13: Predicted WBA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

Table 9: WBA indicator raster statistics and relative changes with respect to the baseline and to 
the control of each round. 

Indicator year r treat WBA mean  median  stdev  min  max Rel change baseline Rel Change T 

WBA 2022 r1 treatiszero 0.079 0.053 0.086 0.000 0.891 -   

WBA 2022 r1 treatisone 0.151 0.153 0.116 0.000 0.991 0.92 0.92 

WBA 2022 r2 treatiszero 0.137 0.125 0.109 0.000 0.825 0.73   

WBA 2022 r2 treatisone 0.228 0.225 0.123 0.000 0.925 1.89 0.67 

WBA 2023 r1 treatiszero 0.068 0.034 0.079 0.000 0.683 -0.14   

WBA 2023 r1 treatisone 0.143 0.134 0.105 0.000 0.783 0.81 1.11 

WBA 2023 r2 treatiszero 0.127 0.127 0.105 0.000 0.670 0.62   

WBA 2023 r2 treatisone 0.211 0.227 0.128 0.000 0.770 1.69 0.66 

Average changes           0.93 0.84 
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Figure 14 illustrates the spatial distribution of the WBR indicator for control and intervention 
scenarios during the two rounds in the two years. Table 10 reports the raster statistics for each 
map and summarizes the relative changes with respect to the baseline and to the control of 
each round. 

Table 10: WBR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat WBR mean  median  stdev  min  max Rel change baseline Rel Change T 

WBR 2022 r1 treatiszero 0.074 0.029 0.091 0.000 0.693 -   

WBR 2022 r1 treatisone 0.201 0.201 0.138 0.000 0.866 1.73 1.73 

WBR 2022 r2 treatiszero 0.169 0.162 0.126 0.000 0.848 1.30   

WBR 2022 r2 treatisone 0.332 0.334 0.142 0.000 1.000 3.51 0.96 

WBR 2023 r1 treatiszero 0.094 0.070 0.098 0.000 0.685 0.28   

WBR 2023 r1 treatisone 0.239 0.242 0.133 0.000 0.857 2.25 1.54 

WBR 2023 r2 treatiszero 0.234 0.247 0.132 0.000 0.780 2.18   

WBR 2023 r2 treatisone 0.400 0.419 0.146 0.000 0.952 4.44 0.71 

Average changes           2.24 1.23 
 

 
Figure 14: Predicted WBR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

For both bee indicators the treatment results in positive changes in all sampling rounds with 
an average increase of 84 and 123% over the control for WBA and WBR respectively.  Also, 
the trend with respect to the baseline is consistently positive, except for the first round of the 
second year where it resulted in a -14% average decrease of the WBA indicator. 
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For spider indicators, figures 15 and 16 illustrate the spatial distribution of the normalized SpA 
and SpR indicators respectively, for control and intervention scenarios during the two rounds 
in the two years. Table 11 and 12 report the raster statistics for each map and summarize the 
relative changes with respect to the baseline and to the control of each round. 

 

 
Figure 15: Predicted SpA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

Table 11: SpA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat SpA mean  median  stdev  min  max Rel change baseline Rel Change T 

SpA 2022 r1 treatiszero 0.088 0.081 0.066 0.000 0.753 -   

SpA 2022 r1 treatisone 0.086 0.077 0.066 0.000 0.750 -0.03 -0.031 

SpA 2022 r2 treatiszero 0.117 0.119 0.068 0.000 0.720 0.33   

SpA 2022 r2 treatisone 0.115 0.116 0.067 0.000 0.717 0.30 -0.024 

SpA 2023 r1 treatiszero 0.118 0.113 0.062 0.000 0.701 0.34   

SpA 2023 r1 treatisone 0.115 0.110 0.062 0.000 0.698 0.30 -0.025 

SpA 2023 r2 treatiszero 0.173 0.162 0.068 0.000 0.750 0.95   

SpA 2023 r2 treatisone 0.170 0.159 0.068 0.000 0.747 0.92 -0.018 

Average changes           0.44 -0.025 
 

Differently from the wild bee indicators, those for spiders were characterized by systematically 
negative changes with respect to control within the same round, but the overall trend with 
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respect to the baseline was positive for SpA for the second round of 2022 and for the first and 
the second rounds in 2023. In the case of the SpR indicator the trend was positive only for the 
second round in both 2022 and 2023. 

 

Table 12: SpA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat SpR mean  median  stdev  min  max Rel change baseline Rel Change T 

SpR 2022 r1 treatiszero 0.150 0.131 0.132 0.000 1.000 -   

SpR 2022 r1 treatisone 0.110 0.077 0.119 0.000 1.000 -0.27 -0.27 

SpR 2022 r2 treatiszero 0.560 0.516 0.232 0.000 1.000 2.73   

SpR 2022 r2 treatisone 0.511 0.463 0.238 0.000 1.000 2.40 -0.09 

SpR 2023 r1 treatiszero 0.062 0.023 0.086 0.000 1.000 -0.59   

SpR 2023 r1 treatisone 0.036 0.000 0.070 0.000 1.000 -0.76 -0.42 

SpR 2023 r2 treatiszero 0.360 0.321 0.201 0.000 1.000 1.39   

SpR 2023 r2 treatisone 0.308 0.268 0.201 0.000 1.000 1.05 -0.14 

Average changes           0.85 -0.23 
 

 

Figure 16: Predicted SpR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 
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The spatiotemporal trend of the PlaR indicator is summarized in Table 13 and illustrated in 
Figure 17. The average changes with respect to the baseline and the average increase in the 
intervention fields with respect to the control ones during each round were almost equal, with 
103 and 105% changes, respectively. Except for an average -5% decrease in the first round 
of 2023, the trend was always positive. 

 

Figure 17: Predicted PlaR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

Table 13: PlaR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat PlaR mean  median  stdev  min  max Rel change baseline Rel Change T 

 PlaR 2022 r1 treatiszero 0.164 0.145 0.154 0.000 1.000 -   

 PlaR 2022 r1 treatisone 0.359 0.373 0.197 0.000 1.000 1.19 1.19 

 PlaR 2022 r2 treatiszero 0.270 0.227 0.223 0.000 1.000 0.65   

 PlaR 2022 r2 treatisone 0.481 0.455 0.210 0.000 1.000 1.93 0.78 

 PlaR 2023 r1 treatiszero 0.155 0.143 0.127 0.000 1.000 -0.05   

 PlaR 2023 r1 treatisone 0.363 0.371 0.160 0.000 1.000 1.21 1.34 

 PlaR 2023 r2 treatiszero 0.245 0.249 0.159 0.000 1.000 0.49   

 PlaR 2023 r2 treatisone 0.460 0.477 0.178 0.000 1.000 1.81 0.88 

Average changes           1.03 1.05 
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To provide a composite indicator describing the overall biodiversity and its spatiotemporal 
dynamics over the CSA, the estimates of the five core indicators for each round were summed, 
and the sum 0-1 normalized. Results are shown in Figure 18, and the raster statistics are 
summarized in Table 14 along with the relative changes with respect to the baseline and for 
each round with respect to the control. 

 

Figure 18: Predicted BioDiv indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

Table 14: BioDiv indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat BioDiv mean  median  stdev  min  max Rel change baseline Rel Change T 

BioDiv 2022 r1 treatiszero 0.151 0.136 0.096 0.000 1.000 -   

BioDiv 2022 r1 treatisone 0.254 0.258 0.127 0.000 1.000 0.68 0.68 

BioDiv 2022 r2 treatiszero 0.377 0.347 0.177 0.000 1.000 1.49   

BioDiv 2022 r2 treatisone 0.463 0.443 0.172 0.000 1.000 2.06 0.23 

BioDiv 2023 r1 treatiszero 0.148 0.130 0.094 0.000 1.000 -0.02   

BioDiv 2023 r1 treatisone 0.247 0.244 0.106 0.000 1.000 0.63 0.67 

BioDiv 2023 r2 treatiszero 0.339 0.332 0.148 0.000 1.000 1.24   

BioDiv 2023 r2 treatisone 0.422 0.423 0.148 0.000 1.000 1.79 0.24 

Average changes           1.12 0.45 
 

The overall average biodiversity increase resulting from the implementation of the biodiversity 
friendly management practice was equal to 45%, with marked increase above 60% observed 
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for the first rounds, while in the second rounds the difference between control and intervention 
were below 25% in both years. The overall trend with respect to the baseline was constantly 
positive, apart from the first round in 2023 which saw a -2% decrease. The overall joint trend 
of all the six indicators, with their synergies and trade-offs, is visually summarized in the radar 
graph depicted in Figure 19. The indicators values shown in the figure are averaged over the 
two rounds of each year 

 

Figure 19: Radar graph of the round-averaged indicators for the control and the intervention in 
the two years of observation. 
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3.2 Spanish EBA 
 

The Spanish CSA encompassing the SHOWCASE EBA fields is in Andalusia (Guadalquivida 
Community), in the alluvial plain on the Guadalquivir River and surrounding hills which border 
the plain to the North and to the South of the riverbed.  The area has an extension of 433.2 
km2, with an elevation ranging from 2 to 347 m a.s.l. and stretches for ca. 90 km in the NE-
SW direction from the municipality of Palma del Rio to south of Sevilla. The area is highly 
anthropized and characterized by intensive agricultural land use with fruit orchards and 
vegetable farms. In the last decade there has been a strong land cover transition towards 
citrus orchards which with 22,787 ha represent ca. 52% of the fruit orchard area (Junta de 
Andalucía, 2023) and 23% of the whole CSA. Other fruit orchards cover an area of 11,214 ha, 
with a share of 26% of the permanent crop area and 11% of the whole area. Olive orchards 
are present on 9,267 ha, representing 21% of the permanent crop area and 9% of the whole 
area, while vineyards occupy less than 50 ha, i.e. 0.1% of the permanent crop area and 0.05% 
of the whole area. In total the area of permanent crops exceeds 43,315 ha, which represents 
the target area for upscaling the core biodiversity indicators. Few seminatural elements are in 
the agricultural fields, and tree elements are mostly present along the river streams. 

 
Figure 20.  Geographical location of the Spanish CSA. 

 

Following the SHOWCASE sampling protocol, the core indicator data were collected in two 
rounds (March and April) in 2022 and 2023 from eighteen control fields and eighteen 
intervention fields. Plant richness was sampled only once every year, in April 2022 (second 
round) and in March 2023 (first round). The descriptive statistics of the five biodiversity 
indicators are summarized in Table 15 for individual and species counts and their 0-1 
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normalized indicators. Table 16 reports the descriptive statistics of the five indicators for 
control and intervention fields for the two years of observations. 

 
Table 15: Descriptive statistics of the five SHOWCASE core indicators in the Spanish EBA 

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max 
Counts               
WBA 128 37.2 54.6 4.8 0 20.5 443 

WBR 128 7.0 5.4 0.5 0 7 23 

SpA 128 5.3 8.4 0.7 0 2.5 44 

SpR 128 1.8 2.4 0.2 0 1 13 

PlaR 64 12.2 5.6 0.7 0 11.5 26 

Indicator (0-1)               

Ind WBA 128 0.189 0.245 0.022 0.000 0.102 1.000 

Ind WBR 128 0.382 0.304 0.027 0.000 0.341 1.000 

Ind SpA 128 0.257 0.306 0.027 0.000 0.114 1.000 

Ind SpR 128 0.237 0.282 0.025 0.000 0.154 1.000 

Ind PlaR 64 0.489 0.256 0.032 0.000 0.458 1.000 
 

Table 16: Descriptive statistics of the five SHOWCASE core indicators in the control and 
intervention fields of the Spanish EBA  

 Indicator Treatment Means N Std. Dev. Std. Err. Min Median Max 
Ind WBA Control 0.070 64 0.136 0.017 0.000 0.034 0.959 

 Intervention 0.308 64 0.271 0.034 0.000 0.213 1.000 

 All Groups 0.189 128 0.245 0.022 0.000 0.102 1.000 

Ind WBR Control 0.196 64 0.225 0.028 0.000 0.167 0.882 

 Intervention 0.568 64 0.256 0.032 0.000 0.588 1.000 

 All Groups 0.382 128 0.304 0.027 0.000 0.341 1.000 

Ind SpA Control 0.210 64 0.290 0.036 0.000 0.067 1.000 

 Intervention 0.305 64 0.316 0.040 0.000 0.200 1.000 

 All Groups 0.257 128 0.306 0.027 0.000 0.114 1.000 

Ind SpR Control 0.198 66 0.286 0.035 0.000 0.000 1.000 

 Intervention 0.276 66 0.276 0.034 0.000 0.200 1.000 

 All Groups 0.237 132 0.282 0.025 0.000 0.154 1.000 

Ind PlaR Control 0.399 32 0.282 0.050 0.000 0.388 0.950 

 Intervention 0.579 32 0.191 0.034 0.300 0.571 1.000 

 All Groups 0.489 64 0.256 0.032 0.000 0.458 1.000 
 

Statistically significant differences (p< 0.05) in indicator mean values were detected for WBA, 
WBR and PlaR indicators, but not for SpA and SpR indicators, even though the mean values 
observed for the control fields were lower than those observed for the intervention fields. Mean 
indicator values for the second sampling round were somewhat lower than in the first round in 
both control and intervention fields for WBA, WBR SpA and PlaR, while in the intervention 
fields a non-significant increase was observed only for SpR.  Over the two years of 
observations, the mean values of the indicators showed an increase which was always more 
evident in the intervention fields, but this was statistically significant only for WBA in the 
intervention fields. 
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As similar trends in terms of responses to biodiversity management intervention and temporal 
dynamics were observed for the indicators of the Portuguese EBA and given the strong 
similarities of the agricultural systems considered in the two EBAs, i.e. intensive fruit orchards 
in Andalucia and intensive olive orchards in Alentejo, and the lack of statistically significant 
differences in the mean indicators values from the two data sets in terms of responses to 
management, rounds and year of sampling, a single dataset was used to calibrate more robust 
spatiotemporal models for upscaling effects from the field to landscape scale. These analyses 
are potentially generalizable to similar perennial systems in the south Iberian peninsula. The 
descriptive statistics for the ES-PT joint dataset are reported in Tables 17 and 18.  

  

Table 17: Descriptive statistics of the five SHOWCASE core indicators for the ES-PT combined 
dataset 

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max 
Counts               
WBA 168 33.1 49.5 3.8 0 17 443 

WBR 168 7.6 6.4 0.5 0 7 42 

SpA 191 11.5 19.6 1.4 0 5 170 

SpR 191 2.2 2.8 0.2 0 1 15 

PlaR 127 20.8 10.5 0.9 1 20 43 

Indicator (0-1) 
  

  
 

 
 

Ind WBA 168 0.195 0.251 0.019 0.000 0.100 1.000 

Ind WBR 168 0.362 0.298 0.023 0.000 0.294 1.000 

Ind SpA 191 0.262 0.292 0.021 0.000 0.136 1.000 

Ind SpR 191 0.265 0.288 0.021 0.000 0.200 1.000 

Ind PlaR 127 0.524 0.261 0.023 0.000 0.500 1.000 

 

Table 18: Descriptive statistics of the five SHOWCASE core indicators in the control and 
intervention fields of the Spanish and Portuguese EBAs  

 Indicator Treatment Means N Std. Dev. Std. Err. Min Median Max 
Ind WBA Control 0.065 84 0.120 0.013 0.000 0.039 0.959 

 Intervention 0.325 84 0.280 0.031 0.000 0.232 1.000 

 All Groups 0.195 168 0.251 0.019 0.000 0.100 1.000 

Ind WBR Control 0.179 84 0.204 0.022 0.000 0.143 0.882 

 Intervention 0.544 84 0.264 0.029 0.000 0.568 1.000 

 All Groups 0.362 168 0.298 0.023 0.000 0.294 1.000 

Ind SpA Control 0.203 96 0.258 0.026 0.000 0.088 1.000 

 Intervention 0.322 95 0.313 0.032 0.000 0.222 1.000 

 All Groups 0.262 191 0.292 0.021 0.000 0.136 1.000 

Ind SpR Control 0.221 98 0.289 0.029 0.000 0.101 1.000 

 Intervention 0.311 97 0.281 0.029 0.000 0.250 1.000 

 All Groups 0.265 195 0.288 0.021 0.000 0.200 1.000 

Ind PlaR Control 0.440 64 0.267 0.033 0.000 0.450 0.950 

 Intervention 0.610 63 0.227 0.029 0.050 0.625 1.000 

 All Groups 0.524 127 0.261 0.023 0.000 0.500 1.000 
 



D2.7: Multiscale spatiotemporal modelling of biodiversity indicators  43 | Page 
_________________________________________________________________________ 
 

 

In the joint dataset for all indicators, mean SpA and SpR for the intervention fields were 
significantly higher (p <0.05) than the means observed for the control fields.  

The assessment of the relevance of each single predictor from the RF is presented in Table 
19 and in Figures 21 and 22.  

 

Table 19: Relevance of RF predictors for the five biodiversity indicators in term of node purity; 
colors highlight the most relevant predictors (orange > brown >light brown) 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 21. RF variable contribution plots for WBA (left) and, WBR (right) indicators for the 
Spanish and Portuguese EBA’s. 

Predictors

NodePurity Rel. % NodePurity Rel. % NodePurity Rel. % NodePurity Rel. % NodePurity Rel. %
dummy_treat   0.099 1.44% 0.130 1.26% 0.078 0.69% 0.077 0.80% 0.053 0.95%

dummy_year     0.149 2.17% 0.071 0.69% 0.131 1.17% 0.078 0.82% 0.128 2.31%

dummy_round    0.022 0.32% 0.065 0.63% 0.123 1.09% 0.088 0.92%
swf_prox       0.247 3.62% 0.358 3.47% 0.490 4.36% 0.358 3.73% 0.172 3.11%

road_prox      0.318 4.65% 0.309 3.00% 0.370 3.29% 0.340 3.53% 0.205 3.70%

aspect         0.316 4.62% 0.479 4.65% 0.405 3.60% 0.368 3.82% 0.238 4.30%

elevation      0.231 3.38% 0.293 2.85% 0.484 4.30% 0.342 3.55% 0.382 6.89%

slope          0.206 3.01% 0.373 3.63% 0.613 5.44% 0.324 3.37% 0.138 2.49%

catchslope     0.219 3.20% 0.356 3.46% 0.294 2.61% 0.218 2.27% 0.189 3.41%

catcharea      0.254 3.71% 0.578 5.62% 0.520 4.62% 0.499 5.19% 0.248 4.47%

modcatchar     0.229 3.34% 0.517 5.02% 0.471 4.18% 0.316 3.29% 0.256 4.61%

twi            0.264 3.86% 0.505 4.91% 0.388 3.45% 0.305 3.17% 0.446 8.05%

valleydept     0.219 3.20% 0.305 2.97% 0.512 4.55% 0.497 5.17% 0.250 4.50%

bi             0.441 6.44% 0.516 5.02% 0.492 4.37% 0.352 3.66% 0.193 3.48%

blue           0.220 3.21% 0.358 3.48% 0.546 4.85% 0.518 5.39% 0.202 3.65%

green          0.222 3.24% 0.397 3.85% 0.401 3.56% 0.390 4.05% 0.237 4.28%

ir             0.293 4.28% 0.408 3.97% 0.511 4.54% 0.339 3.53% 0.238 4.28%

irn            0.286 4.17% 0.430 4.17% 0.448 3.98% 0.327 3.40% 0.268 4.84%

ndbsi          0.438 6.40% 0.479 4.65% 0.398 3.53% 0.384 4.00% 0.205 3.69%

ndsi           0.306 4.47% 0.454 4.42% 0.440 3.91% 0.389 4.04% 0.237 4.28%

ndvi           0.316 4.61% 0.447 4.34% 0.550 4.89% 0.339 3.53% 0.237 4.27%

red            0.244 3.57% 0.391 3.80% 0.437 3.88% 0.482 5.02% 0.148 2.66%

sosa           0.268 3.91% 0.435 4.23% 0.417 3.70% 0.505 5.25% 0.150 2.70%

sosi1          0.261 3.81% 0.360 3.50% 0.385 3.42% 0.425 4.42% 0.157 2.83%

sosi2          0.264 3.85% 0.461 4.48% 0.520 4.62% 0.345 3.59% 0.204 3.67%

sosi3          0.234 3.42% 0.419 4.07% 0.390 3.47% 0.507 5.27% 0.174 3.15%

swir           0.280 4.09% 0.398 3.87% 0.443 3.94% 0.502 5.22% 0.191 3.44%

WBA Indicator SpA Indicator PlaR IndicatorSpR IndicatorWBR Indicator
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Figure 22. RF variable contribution plots for SpA (top left), SpR (top right) and PlaR (bottom 
center) indicators for the Spanish and Portuguese EBA’s. 

Contrarily to what was suggested by field observations, treatment dummy variables appeared 
not to be relevant contributors to the RF predictions for all the indicators, differently from terrain 
attributes and RSI which, in different combinations for the selected indicators, played a major 
role. For example, topographic wetness index and elevation were the most relevant predictors 
for PlaR followed by reflectance in the near-infrared band. The distance from the road network 
was a major determinant of WBA, while in the case of SpA, the distance from small woody 
features had medium predictive power. Bare soil-related RSI (e.g., BI and NDBSI) had strongly 
predicted both WBA and WBR, while vegetation index (NDVI) affected WBR, WBA and SpA 
with increasing predictive power. 

The MLR coefficients for the normalized biodiversity indicators are summarized in Table 20, 
and from their statistical significance, it appears that treatment (dummy variable) is a 
statistically significant predictor for WBA, WBR and PlaR and that the stepwise combined 
approach included it also for SpA and SpR. Overall, there is a good agreement in terms of the 
predictors identified via stepwise MLR and the relevance of predictors as assessed via the RF 
algorithms. Nevertheless, for all indicators, the performance evaluated in terms of error indices 
(Table 21) highlights that MLR returns smaller calibration errors and provide higher agreement 
indices between observed and estimated indicator values (Figure 23). Only for the PlaR 
indicator the differences in the error indices are closer and of the same order of magnitude, 
but in this case, MLRs perform better than RF. 
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Table 20: Coefficients of the MLRs calibrated for the normalized biodiversity indicators; 
significant coefficients in red (p <0.05) and blue (p>0.10) 

Predictor WBA WBR SpA SpR PlaR 
Intercept 1.953610 0.967043 1.724635 0.324924 -0.047122 
Dummy Treat 0.139537 0.322600 -0.026903 0.014897 0.093101 
Dummy Round -0.088980 -0.352393 -0.092180 -0.101861   
Dummy Year 0.175778 -0.056377 0.178538   0.228596 
Roads prox   -0.000388 -0.000249   -0.000177 
SWF prox     0.000145     
Aspect -0.000255     -0.000613   
Elevation   -0.000599 -0.000421   0.001589 
Catch. Area     0.000004 0.000006   
CatchSlope   3.094585 -1.720080     
Mod. Catch. Area 0.000001 0.000001 0.000003     
TWI   0.083604 -0.179431     
Valley Depth -0.000907 -0.001066 0.001642 0.001966 0.001427 
BI   -6.709545 -3.000944 -0.836076   
blue -0.001305         
green   -0.003600       
IR   0.000025     0.000290 
IRn   0.000513     -0.000215 
NDBSI -0.885838         
NDSI   3.019846       
NDVI     -1.129670     
red       -0.000058   
SOSA   0.002370       
SOSI2 0.000044 0.000941       
SOSI3 0.000010         

 
 
 
Table 21: Calibration error indices for MLR and RF predictive model for the five biodiversity 
indicators 

Error WBA Indicator WBR Indicator SpA indicator SpR Indicator PlaR Indicator 
indices RF MLR RF MLR RF MLR RF MLR RF MLR 

ME  -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00 0.01 0.00 
AE 0.18 0.10 0.24 0.15 0.24 0.12 0.24 0.13 0.18 0.14 
SE 0.25 0.02 0.29 0.19 0.30 0.15 0.29 0.16 0.23 0.17 
R2 0.03 0.49 0.07 0.52 0.02 0.51 0.03 0.45 0.19 0.43 
MSR 0.06 0.02 0.08 0.04 0.09 0.02 0.08 0.03 0.05 0.03 
IoA 0.19 0.78 0.27 0.81 0.16 0.79 0.07 0.77 0.48 0.75 

 

The MLR models were then used to assess and map the five biodiversity indicators over the 
entire agricultural land area occupied by permanent crops in the Spanish and Portuguese 
CSAs. Based on the resulting raster maps (resolution 10 m), raster statistics were calculated 
for each map to assess the average relative changes with respect to the baseline situation 
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(year 1, control) and for each round the relative changes from the treatment implementation 
over the whole target area to quantify the potential impact of the biodiversity management 
practice implemented in the EBA. 

 

Figure 23: Calibration error indices for MLR and RF predictive model for the five biodiversity 
indicators 

 

Table 22 reports the descriptive statistics of the WBA indicator estimates over the whole target 
area (43,315 ha). The results highlight a positive trend with respect to the 2022 baseline 
(control), with only the control at round 2 showing a -42% reduction in the average indicator 
value, very likely due to the hotter and dryer climate conditions. The increase due to the 
intervention with respect to the control was particularly evident in the first year, where values 
for the control were particularly low, with increases above 100 and 200% in the first and the 
second round respectively, while in the second year they ranged between 42 and 25%. This 
is probably due to the persisting drought conditions also in 2023.  The maps underpinning the 
statistics presented in the table are shown in Figure 24. 

 

Table 22: WBA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

WBA 2022 r1 treatiszero 0.089 0.084 0.072 0.000 1.000 -   

WBA 2022 r1 treatisone 0.221 0.224 0.085 0.000 1.000 1.47 1.47 

WBA 2022 r2 treatiszero 0.052 0.038 0.055 0.000 0.977 -0.42   

WBA 2022 r2 treatisone 0.175 0.178 0.076 0.000 1.000 0.96 2.37 

WBA 2023 r1 treatiszero 0.291 0.294 0.080 0.000 1.000 2.25   

WBA 2023 r1 treatisone 0.413 0.416 0.077 0.000 0.959 3.62 0.42 

WBA 2023 r2 treatiszero 0.219 0.221 0.076 0.000 1.000 1.45   

WBA 2023 r2 treatisone 0.274 0.276 0.059 0.000 0.765 2.06 0.25 

Average changes           1.63 1.13 
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Figure 24: Predicted WBA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Figure 25: Predicted WBR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Table 23: WBR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

WBR 2022 r1 treatiszero 0.411 0.411 0.159 0.000 1.000 -   

WBR 2022 r1 treatisone 0.729 0.734 0.151 0.000 1.000 0.78 0.78 

WBR 2022 r2 treatiszero 0.120 0.101 0.120 0.000 1.000 -0.71   

WBR 2022 r2 treatisone 0.425 0.423 0.139 0.000 1.000 0.03 2.55 

WBR 2023 r1 treatiszero 0.434 0.432 0.151 0.000 1.000 0.06   

WBR 2023 r1 treatisone 0.751 0.755 0.141 0.000 1.000 0.83 0.73 

WBR 2023 r2 treatiszero 0.107 0.081 0.120 0.000 1.000 -0.74   

WBR 2023 r2 treatisone 0.408 0.404 0.141 0.000 1.000 -0.01 2.81 

Average changes           0.03 1.72 
 

The maps in Figure 25 illustrate the results of the spatiotemporal modelling of the WBR 
indicator for the permanent crops in the Spanish CSA, and Table 23 presents a synthesis of 
the descriptive statistics of the indicator estimates for the whole target area. The results 
highlight a lack of a regular trend with respect to the 2022 baseline (control), with the control 
at round 2 showing a -71 and -74% reduction in the average indicator value in 2022 and 2023 
respectively. A negative trend with respect to the baseline value was also observed for round 
2 in the intervention fields, but in this case the reduction was only -1%. The increase due to 
the intervention with respect to the control was evident in both years with very similar values 
in both rounds of the two years of observations, but the relative increases observed in the 
second rounds were about four times higher than those observed in the first rounds.  
 

Table 24 reports the descriptive statistics of the SpA indicator estimates over the whole target 
area. The results highlight a consistently negative trend with respect to the 2022 baseline 
(control), with a stronger decrease in the indicator mean value in the second round of 2023 (-
89%). The decrease in spider abundance due to the intervention with respect to the control 
was evident in the first year, with decreases equal to -10 and -13% in the first and the second 
round respectively, while in the second year a +8% increase was observed in the first round, 
followed by a -3% decrease in the second. The maps underlying the descriptive statistics 
presented in Table 24 are shown in Figure 26. 
 

Table 24: SpA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

SpA_2022_r1_treatiszero 0.229 0.217 0.169 0.000 1.000 -   

SpA_2022_r1_treatisone 0.206 0.190 0.164 0.000 1.000 -0.10 -0.10 

SpA_2022_r2_treatiszero 0.148 0.123 0.142 0.000 1.000 -0.36   

SpA_2022_r2_treatisone 0.128 0.096 0.135 0.000 1.000 -0.44 -0.13 

SpA_2023_r1_treatiszero 0.190 0.191 0.087 0.000 0.494 -0.17   

SpA_2023_r1_treatisone 0.206 0.206 0.101 0.000 0.574 -0.10 0.08 

SpA_2023_r2_treatiszero 0.026 0.026 0.017 0.000 0.104 -0.89   

SpA_2023_r2_treatisone 0.025 0.025 0.018 0.000 0.112 -0.89 -0.03 

Average changes           -0.42 -0.05 
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Figure 26: Predicted SpA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Figure 27: Predicted SpR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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The eight maps in Figure 27 depict the outcomes of the spatiotemporal modelling of the SpR 
indicator for the permanent crops in the Spanish CSA, and Table 25 synthesizes the 
descriptive statistics of the indicator estimates for the whole target area. The results highlight 
in both years a reduction with respect to the baseline in the second rounds for both control 
and intervention fields, which was slightly more evident in 2023. The relative change due to 
the intervention with respect to the control was always positive in both years with very similar 
values in both rounds and in the two years of observations, and equal to 5% for the first rounds 
and between 7 and 8% for the second.  

 

Table 25: SpR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

SpR_2022_r1_treatiszero 0.277 0.272 0.137 0.000 1.000 -   

SpR_2022_r1_treatisone 0.292 0.287 0.137 0.000 1.000 0.05 0.05 

SpR_2022_r2_treatiszero 0.188 0.181 0.129 0.000 1.000 -0.32   

SpR_2022_r2_treatisone 0.202 0.196 0.130 0.000 1.000 -0.27 0.07 

SpR_2023_r1_treatiszero 0.282 0.278 0.133 0.000 1.000 0.02   

SpR_2023_r1_treatisone 0.297 0.293 0.133 0.000 1.000 0.07 0.05 

SpR_2023_r2_treatiszero 0.165 0.155 0.126 0.000 1.000 -0.41   

SpR_2023_r2_treatisone 0.178 0.170 0.128 0.000 1.000 -0.36 0.08 

Average changes           -0.17 0.07 
 

The results for PlaR indicators are summarized in terms of descriptive statistics for the raster 
maps in Table 26. The implementation of biodiversity management results in an increase of 
the average value of the indicator at each round of the two years of observations, with an 
increase of ca. 30% for the two rounds in 2022, and a smaller increase of 17% for the two 
rounds of 2023. The overall trend with respect to the baseline was always positive, with the 
major gains detected in the intervention fields in the second year. The eight raster maps at 10 
m resolution underpinning the figures reported in Table 26 are shown in Figure 28.  

 

Table 26: PlaR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

PlaR_2022_r1_treatiszero 0.300 0.284 0.068 0.000 0.837 -   

PlaR _2022_r1_treatisone 0.393 0.377 0.068 0.012 0.930 0.31 0.31 

PlaR _2022_r2_treatiszero 0.333 0.317 0.068 0.000 0.866 0.11   

PlaR _2022_r2_treatisone 0.426 0.410 0.068 0.006 0.959 0.42 0.28 

PlaR _2023_r1_treatiszero 0.546 0.531 0.069 0.000 1.000 0.82   

PlaR _2023_r1_treatisone 0.639 0.624 0.069 0.081 1.000 1.13 0.17 

PlaR _2023_r2_treatiszero 0.562 0.547 0.068 0.038 1.000 0.87   

PlaR _2023_r2_treatisone 0.655 0.640 0.068 0.132 1.000 1.18 0.17 

Average changes           0.69 0.23 
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Figure 28: Predicted PlaR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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From the sum of the five biodiversity indicators for each round of sampling and for the two 
years of field observations, combined biodiversity indices were calculated, 0-1 normalized and 
mapped, as shown in Figure 29. The rasters were used as the basis to calculate zonal 
statistics for the target land use area, which are presented in Table 27.  

 

Table 27: BioDiv indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

BioDiv_2022_r1_treatiszero 0.310 0.300 0.111 0.000 1.000 -   

BioDiv_2022_r1_treatisone 0.406 0.398 0.108 0.000 1.000 0.31 0.31 

BioDiv_2022_r2_treatiszero 0.212 0.198 0.089 0.000 1.000 -0.31   

BioDiv_2022_r2_treatisone 0.290 0.281 0.093 0.000 1.000 -0.06 0.36 

BioDiv_2023_r1_treatiszero 0.354 0.349 0.103 0.000 1.000 0.14   

BioDiv_2023_r1_treatisone 0.474 0.469 0.104 0.000 1.000 0.53 0.34 

BioDiv_2023_r2_treatiszero 0.246 0.236 0.089 0.000 1.000 -0.21   

BioDiv_2023_r2_treatisone 0.334 0.327 0.093 0.000 1.000 0.08 0.36 

Average changes           0.07 0.34 
 

The overall average biodiversity gain resulting from the implementation of the biodiversity 
friendly management practice was equal to 34%, with a fairly constant increase in the two 
rounds of the two years between 31 and 36%. The overall trend with respect to the baseline 
was characterized by a marked decrease in the control fields in the second round in both 
years, equal to -31 and -21% in 2022 and 2023 respectively. The changes in the intervention 
fields with respect to the baseline were positive and remarkable for the first round, while for 
the second the change was negative in 2022 with a -6% decrease and slightly positive in 2023 
with an 8% increase.  
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Figure 29: Predicted BioDiv indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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The overall joint trend of all the six indicators, with their synergies and trade-offs, is visually 
summarized in the radar graph depicted in Figure 31. The indicators values shown in the 
Figure are averaged over the two rounds of each year. 

 

 

 

Figure 31: Radar graph of the round-averaged indicators for the control and the intervention in 
the two years of observation. 

 

 

 

 

 

 

 

 

 

 

 

 

  



D2.7: Multiscale spatiotemporal modelling of biodiversity indicators  57 | Page 
_________________________________________________________________________ 
 

 

3.3 Portuguese EBA 
 

The CSA encompassing the Portuguese EBA fields comprises five municipalities in southern 
Portugal in the Alentejo Central (Evora and Portel) and Baixo Alentejo (Beja, Cuba and 
Vidigueira) provinces. The areas of the five municipalities sum up to a total of ca 3,500 km2, 
11.9% of which are occupied by permanent tree orchards for a total of 56,785 ha. Of this, a 
share of 74.5% is occupied by olive groves (42,295 ha), 14.3% by vineyards (8,111 ha), and 
11.2% by fruit orchards (6,379 ha).  The area has an elevation ranging between 34 and 420 
m, with a gentle hilly morphology and uniform peneplains, and with few reliefs that generally 
follow the Hercynian Orogeny geologic main direction NW-SE. The area is characterized by 
the presence of natural and semi-natural vegetation in the form of extensive savanna-like 
forests mainly composed of cork (Quercus suber L.) and holm-oak (Q. rotundifolia L.) trees in 
varying densities, the characteristic Portuguese montado, which is considered a High Nature 
Value Farming System according to EEA. Within the CSA there are three Natura 2000 sites 
plus parts of four additional Natura 2000 sites at the NW and S borders of the area, for a total 
of 46,078.5 ha. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32.  Geographical location and elevation of the Portuguese CSA with the locations of 
seven Natura2000 sites. 

 

The proximity of the Alqueva reservoir to the east (surface area of 250 km2, capacity of 4,150 
million m3) affects the microclimate of the area and provides a great source of water to regional 
agriculture, with 53.26% of olive groves benefitting from irrigation infrastructures, and the 

Alqueva 
reservoir 
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remaining 46.74% being rainfed (Rodríguez-Cohard et al. 2019; Fraga et al. 2020). To 
respond to market needs and societal demand, olive groves are undergoing a gradual 
intensification process to maximize their yields. Olive intensification is directly associated with 
an increase in tree density (Pastor et al. 2007) with highly intensive orchards having up to 
2000 trees ha−1 and intensive groves 200 - 800 trees ha−1. These together account for ca. 64% 
of the olive-growing area in Alentejo and are responsible for 75% of olive production (INE 
2022a). Intensive groves have highly negative environmental impacts, mostly related to the 
fact that in most of them the herbaceous under-cover is entirely removed, resulting in a high 
risk of soil erosion and biodiversity loss, but also due to the high concentration of nitrates, 
phosphates, and potassium (Caraveli 2000; de Graaf et al. 2010; Guzman et al., 2022; 
Rodríguez Sousa et al., 2022). 

 Following the SHOWCASE sampling protocol, the core indicators data were collected in two 
rounds (April and May) in 2022 and 2023 from twelve control fields and twelve intervention 
fields. Plant richness was sampled twice a year and in April 2023 (first round). The descriptive 
statistics of the five biodiversity indicators are summarized in Table 28 for individual and 
species counts and their 0-1 normalized indicators. Table 29 reports the descriptive statistics 
of the five indicators for the control and intervention fields for two years of observations. 

 
Table 28: Descriptive statistics of the five SHOWCASE core indicators  

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max 
Counts 40 20.1 23.5 3.7 0 9.5 103 

WBA 40 9.5 8.6 1.4 0 6 42 

WBR 63 24.2 28.1 3.5 0 15 170 

SpA 63 3.2 3.3 0.4 0 2 15 

SpR 63 29.5 6.4 0.8 7 29 43 

PlaR        

Indicator (0-1) 40 0.214 0.274 0.043 0.000 0.089 1.000 

Ind WBA 40 0.295 0.270 0.043 0.000 0.190 1.000 

Ind WBR 63 0.273 0.262 0.033 0.000 0.189 1.000 

Ind SpA 63 0.325 0.293 0.037 0.000 0.250 1.000 

Ind SpR 63 0.560 0.264 0.033 0.000 0.600 1.000 

Ind PlaR 40 20.1 23.5 3.7 0 9.5 103 
 

Statistically significant differences (p< 0.05) in indicator mean values were detected for WBA, 
WBR, SpA, and PlaR indicators, but not for the SpR indicator, even though the mean values 
observed for the control fields were slightly lower than those observed for the intervention 
fields. Mean indicator values for the second sampling round are somewhat lower than in the 
first round in both control and intervention fields for WBR, SpA, SpR, and PlaR, while in the 
intervention fields a non-significant increase is observed only for WBA. For the second year 
of observations, biodiversity indicator data from the Portuguese EBA are available at the 
moment of writing this report only for spiders.  The mean values of both SpA and SpR 
indicators show a moderate increase in the second year of observations which is more evident 
in the intervention fields for the SpA indicator.  
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Table 29: Descriptive statistics of the five SHOWCASE core indicators in the control and 
intervention fields of the Portuguese EBA  

 Indicator Treatment Means N Std. Dev. Std. Err. Min Median Max 
Ind WBA Control 0.051 20 0.042 0.009 0.000 0.044 0.173 

 Intervention 0.378 20 0.311 0.069 0.029 0.276 1.000 

 All Groups 0.214 40 0.274 0.043 0.000 0.089 1.000 

Ind WBR Control 0.123 20 0.094 0.021 0.000 0.134 0.286 

 Intervention 0.467 20 0.280 0.063 0.095 0.428 1.000 

 All Groups 0.295 40 0.270 0.043 0.000 0.190 1.000 

Ind SpA Control 0.189 32 0.179 0.032 0.000 0.132 0.718 

 Intervention 0.359 31 0.307 0.055 0.000 0.296 1.000 

 All Groups 0.273 63 0.262 0.033 0.000 0.189 1.000 

Ind SpR Control 0.268 32 0.295 0.052 0.000 0.214 1.000 

 Intervention 0.385 31 0.284 0.051 0.000 0.286 1.000 

 All Groups 0.325 63 0.293 0.037 0.000 0.250 1.000 

Ind PlaR Control 0.481 32 0.248 0.044 0.000 0.500 0.933 

 Intervention 0.643 31 0.259 0.047 0.050 0.722 1.000 

 All Groups 0.560 63 0.264 0.033 0.000 0.600 1.000 
 

As the same trends in terms of responses to biodiversity management intervention and 
temporal dynamics were observed for the indicators of the Spanish  EBA, and given the strong 
similarities of the agricultural systems considered in the two EBAs, i.e. intensive fruit orchards 
in Andalucia and intensive olive orchards in Alentejo, it was decided to use a single data set 
to calibrate  more robust spatiotemporal models for upscaling evidences from the field to 
landscape scale, potentially applicable to same permanent systems in the south Iberian 
peninsula. The descriptive statistics for the ES-PT joint dataset (see section 3.2) are reported 
in Table 17, and the results of model calibration for both RF and MLR models are presented 
in the previous subsection 3.2 on the Spanish EBA. 
 
Table 30: WBA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

WBA 2022 r1 treatiszero 0.076 0.061 0.074 0.000 0.726 -   

WBA 2022 r1 treatisone 0.201 0.200 0.093 0.000 0.865 1.66 1.66 

WBA 2022 r2 treatiszero 0.016 0.000 0.036 0.000 0.468 -0.78   

WBA 2022 r2 treatisone 0.095 0.086 0.079 0.000 0.607 0.25 4.80 

WBA 2023 r1 treatiszero 0.222 0.219 0.096 0.000 0.822 1.93   

WBA 2023 r1 treatisone 0.362 0.359 0.097 0.000 0.962 3.77 0.63 

WBA 2023 r2 treatiszero 0.239 0.227 0.131 0.000 1.000 2.15   

WBA 2023 r2 treatisone 0.377 0.366 0.134 0.000 1.000 3.97 0.58 

Average changes           1.85 1.91 
 
Table 30 summarizes the raster statistics for the WBA indicator estimates over the whole 
target area (56,780 ha). The results highlight a positive trend with respect to the 2022 baseline 
(control), with only the control fields at round 2 showing a -78% reduction in the average 
indicator value. The relative increase due to the intervention with respect to the control was 
particularly evident in the first year, where values for the control fields were particularly low, 
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with increase above 160 and ca. 480% in the first and the second round respectively, while in 
the second year they ranged between 63 and 58%. The maps underpinning the statistics 
presented in the table are shown in Figure 33. 
 

 

Figure 33: Predicted WBA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 
 

Figure 34 illustrates the spatial distribution of the WBR indicator for control and intervention 
scenarios during the two rounds in the two years. Table 31 reports the raster statistics for each 
map and summarizes the relative changes with respect to the baseline and to the control of 
each round. 
 

Table 31: WBR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat WBR mean  median  stdev  min  max Rel change baseline Rel Change T 

WBR 2022 r1 treatiszero 0.258 0.246 0.176 0.000 1.000 -   

WBR 2022 r1 treatisone 0.570 0.568 0.185 0.000 1.000 1.21 1.21 

WBR 2022 r2 treatiszero 0.023 0.000 0.072 0.000 1.000 -0.91   

WBR 2022 r2 treatisone 0.187 0.166 0.162 0.000 1.000 -0.27 7.27 

WBR 2023 r1 treatiszero 0.190 0.169 0.162 0.000 1.000 -0.26   

WBR 2023 r1 treatisone 0.496 0.492 0.184 0.000 1.000 0.92 1.60 

WBR 2023 r2 treatiszero 0.337 0.305 0.264 0.000 1.000 0.31   

WBR 2023 r2 treatisone 0.619 0.627 0.261 0.000 1.000 1.41 0.84 

Average changes           0.34 2.73 
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Figure 34: Predicted WBR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 
 

The relative increase due to the intervention with respect to the control was particularly evident 
in the first year, in which values for the control fields were low in the first round and extremely 
low in the second, resulting in an increase above 120 and 720% in the first and the second 
round respectively. In the second year the increases were equal to 160 and 84% for the first 
and the second rounds, respectively. With respect to the baseline, the changes were negative 
in both control (-91%) and intervention (-27%) fields in the second round of the first year, and 
in the control fields of the first round in 2023 (-26%). 

Differently from the wild bee indicators, the intervention fields were characterized by 
systematically negative changes with respect to control within the same round. The decrease 
was slightly higher in the second rounds of both years, with -16 and -15 % decreases 
respectively in 2022 and 2023, while the corresponding figures for the first rounds are equal 
to -11 and -12%. Similarly, the overall average trend with respect to the baseline was negative 
for SpA for the second round of 2022 and 2023, with increases equal to +26 and 10% for the 
first round of 2023 for the control and intervention treatment, respectively. Figure 35 illustrates 
the spatial distribution maps of the SpA indicator for control and intervention scenarios during 
the two rounds in the two years. 
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Table 32: SpA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat SpA mean  median  stdev  min  max Rel change baseline Rel Change T 

SpA 2022 r1 treatiszero 0.218 0.218 0.154 0.000 1.000 -   

SpA 2022 r1 treatisone 0.195 0.191 0.148 0.000 1.000 -0.11 -0.11 

SpA 2022 r2 treatiszero 0.109 0.080 0.115 0.000 0.902 -0.50   

SpA 2022 r2 treatisone 0.091 0.053 0.107 0.000 0.875 -0.58 -0.16 

SpA 2023 r1 treatiszero 0.275 0.277 0.141 0.000 0.847 0.26   

SpA 2023 r1 treatisone 0.241 0.242 0.133 0.000 0.807 0.10 -0.12 

SpA 2023 r2 treatiszero 0.173 0.163 0.131 0.000 0.848 -0.21   

SpA 2023 r2 treatisone 0.146 0.134 0.120 0.000 0.807 -0.33 -0.15 

Average changes           -0.19 -0.14 
 

 

Figure 35: Predicted SpA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 
 

In the case of the SpR indicators, the relative changes with respect to the control were always 
positive and were very similar between rounds and years, ranging from 4 to 7%. The changes 
with respect to the 2022 control reference baseline were negative for the second round of 
2022 and for the two rounds in 2023. The magnitude of relative decrease was greater in the 
second rounds of both years, with control fields characterized by a slightly higher decrease 
with respect to the intervention fields. On average an overall decrease of -25% in the indicator 
values was observed for the whole target area.  
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Table 33: SpR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

SpR_2022_r1_treatiszero 0.348 0.349 0.137 0.000 1.000 -   

SpR_2022_r1_treatisone 0.363 0.363 0.137 0.000 1.000 0.04 0.04 

SpR_2022_r2_treatiszero 0.217 0.215 0.128 0.000 1.000 -0.38   

SpR_2022_r2_treatisone 0.232 0.230 0.130 0.000 1.000 -0.33 0.07 

SpR_2023_r1_treatiszero 0.311 0.310 0.132 0.000 1.000 -0.11   

SpR_2023_r1_treatisone 0.325 0.325 0.132 0.000 1.000 -0.07 0.05 

SpR_2023_r2_treatiszero 0.183 0.177 0.124 0.000 1.000 -0.48   

SpR_2023_r2_treatisone 0.196 0.192 0.126 0.000 1.000 -0.44 0.07 

Average changes           -0.25 0.06 
 

 

Figure 36: Predicted SpR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 
 

Figure 36 illustrates the estimated spatial distribution of the SpR indicator values for the whole 
target area in the two rounds for the two years of observations.  

The eight raster maps at 10m resolution showing the spatial distribution of the PlaR indicator 
are portrayed in Figure 37. The raster statistics summarised in Table 34 highlight a moderate 
increase in the intervention fields with respect to the control ones, which was very similar in 
the two rounds of the two years of observations, equal to 17% % in 2022 and to ca. 12% in 
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2023. The relative changes with respect to the baseline were always positive, and while in the 
first year they were only observed for the intervention fields, in the second year increases 
above 40% were observed also for the control fields. 

 

 
Figure 37: Predicted PlaR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 
 

Table 34: PlaR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

PlaR_2022_r1_treatiszero 0.540 0.533 0.109 0.040 1.000 -   

PlaR_2022_r1_treatisone 0.633 0.626 0.109 0.133 1.000 0.17 0.17 

PlaR_2022_r2_treatiszero 0.544 0.537 0.110 0.023 1.000 0.01   

PlaR_2022_r2_treatisone 0.637 0.630 0.110 0.116 1.000 0.18 0.17 

PlaR_2023_r1_treatiszero 0.763 0.757 0.105 0.247 1.000 0.41   

PlaR_2023_r1_treatisone 0.853 0.850 0.100 0.340 1.000 0.58 0.12 

PlaR_2023_r2_treatiszero 0.775 0.768 0.107 0.257 1.000 0.44   

PlaR_2023_r2_treatisone 0.863 0.861 0.100 0.350 1.000 0.60 0.11 

Average changes           0.34 0.14 
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Figure 38: Predicted BioDiv indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom 
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 
 

Figure 38 shows the eight raster maps obtained by summing the five biodiversity indicators 
for each round of sampling and for the two years of field observations and normalizing the 
sum to have all estimated indicator values ranging from 0 to 1. The rasters were then used as 
the basis to calculate the zonal statistics for the target land use area, which are presented in 
Table 35.  

Table 35: BioDiv indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

BioDiv_2022_r1_treatiszero 0.337 0.333 0.120 0.000 1.000 -   

BioDiv_2022_r1_treatisone 0.397 0.395 0.114 0.000 1.000 0.18 0.18 

BioDiv_2022_r2_treatiszero 0.322 0.315 0.122 0.000 1.000 -0.04   

BioDiv_2022_r2_treatisone 0.352 0.341 0.127 0.000 1.000 0.04 0.09 

BioDiv_2023_r1_treatiszero 0.333 0.327 0.112 0.000 1.000 -0.01   

BioDiv_2023_r1_treatisone 0.396 0.394 0.111 0.000 1.000 0.17 0.19 

BioDiv_2023_r2_treatiszero 0.368 0.358 0.140 0.000 1.000 0.09   

BioDiv_2023_r2_treatisone 0.445 0.446 0.133 0.000 1.000 0.32 0.21 

Average changes           0.11 0.17 
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The overall average biodiversity gain resulting from the implementation of the biodiversity-
friendly management practice was equal to 17%, with an almost equal increase in the first 
rounds of the two years between 18 and 19%. The increases during the second rounds of the 
two years were however quite distinct, with a relative increase of ca 9% in 2022 and greater 
than 20% in 2023.  The overall trend in relation to the baseline was characterized by a slight 
decrease in the control fields in the second round of 2022 and in the first round of 2023, equal 
to -4 and -1% in 2022 and 2023, respectively. The changes in the intervention fields with 
respect to the baseline were positive and very similar for the first rounds (18% in 2022, 17% 
in 2023), while for the second the change was modest in 2022 with a 4% increase but much 
higher in 2023 with a 32% increase.  

All the evidence for the six indicators considered are summarized in the radar graph shown in 
Figure 39, where the synergies and trade-offs between indicators can also be visually 
appreciated along with the overall effect due to the biodiversity management implementation. 

 

 

Figure 39: Radar graph of the round-averaged indicators for the control and the intervention in 
the two years of observation. 
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3.4 Dutch EBA 
 

The Dutch CSA is located at the southernmost tip of the Netherlands in the region of Zuid-
Limburg, the very south of the province of Limburg (Figure 40). South Limburg is characterized 
by a varied relief, intensive agricultural lands and nature reserves in the middle of highly 
urbanized areas, such as Maastricht in the northwest, and Heerlen in the northeast of the 
CSA. The area is 368.5 km2 and is located on a plateau of loess soils in which several small 
rivers have eroded a range of valleys into the limestone substrate. The elevation ranges from 
5 to 322 m a.s.l. (average 80 m a.s.l.). Intensive arable farming and orchards dominate the 
plateau and dairy farming dominates the valleys. Pastures are mostly intensive with mowing, 
grazing and fertilization. Annual crops are mainly grains (wheat, barley), potatoes, corn and 
sugar beet. Orchards are predominantly apples and pears, with a growing section of 
vineyards. A significant proportion of the valleys furthermore consists of Natura 2000 areas as 
the slopes, in particular, support species-rich calcareous grasslands. The Natura 2000 sites 
sum up to 4073 ha, i.e. 11.1% of the total area. 

Farming in the area consists of a mix of dairy, orchard and arable farming, which are all very 
intensively managed. The target area for the upscaling of the field-based biodiversity 
indicators is represented by arable lands, which cover ca 17,000 ha, i.e. 46.5% of the whole 
area (Figure 40). 

 

Figure 40.  Geographical location of the Dutch CSA. 

 
The Dutch EBA focused on two different interventions in separate studies: (i) lupin (Lupinus 
albus L. and Lupinus angustifolius L.) cultivation in arable fields (farmers financially supported 
to grow lupin) and (ii) (combinations of) hedges and semi-natural grasslands next to winter 
wheat. The biodiversity indicators data provided by the Dutch EBA partners for the 
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spatiotemporal modeling and upscaling refers to the lupin experiment (in-field intervention). 
The available data were collected in two rounds in May and June 2021, in May and June 2022, 
and in May and July 2023. Not all the five biodiversity core indicators were collected at every 
round and in every year: spider indicators data are available for the two rounds of 2022, plants 
indicator data are available for the second rounds of 2021 and 2022, and wild bee indicators 
data are available for the two rounds of 2021, 2022 and 2023. The number and location of 
fields changed in the three years: in 2021 3 intervention and 3 control fields were sampled; in 
2022 7 control and 7 intervention fields, and in 2023 3 control and 3 intervention fields. 

The descriptive statistics of the five biodiversity indicators are summarized in Table 36 for 
individual and species counts and their 0-1 normalized indicators. 

 
Table 36: Descriptive statistics of the five SHOWCASE core indicators  

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max 
Counts 

  
  

 
 

 

WBA 58 17 23 3 0 5.5 86 

WBR 58 3 3 0 0 2 10 

SpA 46 22 24 4 0 14 97 

SpR 46 4 3 0 0 3 14 

PlaR 39 8 4 1 1 8 22 

Indicator (0-1) 
  

  
 

 
 

Ind WBA 58 0.265 0.324 0.043 0.00 0.087 1.00 

Ind WBR 58 0.262 0.283 0.037 0.00 0.200 1.00 

Ind SpA 46 0.246 0.271 0.040 0.00 0.162 1.00 

Ind SpR 46 0.330 0.270 0.040 0.00 0.268 1.00 

Ind PlaR 39 0.493 0.270 0.043 0.00 0.429 1.00 
 

Table 37 summarizes the descriptive statistics of the five normalized indicators for control and 
intervention; statistically significant differences (p< 0.05) in indicator mean values were 
detected for WBA and WBR indicators, with lower mean values observed for the control fields 
(0.052) and significantly higher for the intervention fields (0.479). In the case of PlaR indicator 
the mean value of the intervention field was higher (0.536) than that of the control fields 
(0.453), while for the spider indicators the mean values for the intervention and control fields 
were almost identical for both SpA (0.236 for control vs. 0.258 for intervention) and SpR (0.329 
for control vs. 0.333 for intervention).  

In terms of location along the transects in the fields, given the in-field intervention with lupin 
the mean indicator values are higher in the field center than at the field margins for WBA 
(0.256 vs. 0.186), PlaR (0.670 vs. 0.288), SpA (0.294 vs. 0.178) and SpR (0.352 vs. 0.297), 
but not for WBR (0.226 vs. 0.356). Difference in indicator mean values in the two locations are 
statistically significant (p<0.05) for WBA and PlaR. When considering the effects of the 
biodiversity management intervention and location, the same trend was observed for SpA, 
SpR and PlaR, with higher indicator mean values in the field center for both control and 
intervention fields, and with statistically significant differences (p<0.05) in the case of PlaR 
mean values at both locations. In the case of wild bee indicators, lower values of abundance 
and richness were observed in the center for the control fields, while for the intervention fields 
WBA is significantly higher at the field center, and WBR has very similar mean values in both 
locations. 
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Table 37: Descriptive statistics of the five SHOWCASE core indicators in the control and 
intervention fields of the Dutch EBA  

 Indicator Treatment Means N Std.Dev. Std.Err. Min Median Max 
Ind WBA Control 0.052 29 0.123 0.023 0.000 0.000 0.500 

 Intervention 0.479 29 0.323 0.060 0.000 0.432 1.000 

 All Groups 0.265 58 0.324 0.043 0.000 0.087 1.000 

Ind WBR Control 0.104 29 0.219 0.041 0.000 0.000 1.000 

 Intervention 0.421 29 0.250 0.046 0.000 0.400 1.000 

 All Groups 0.262 58 0.283 0.037 0.000 0.200 1.000 

Ind SpA Control 0.236 25 0.303 0.061 0.000 0.106 1.000 

 Intervention 0.258 21 0.234 0.051 0.000 0.180 0.851 

 All Groups 0.246 46 0.271 0.040 0.000 0.162 1.000 

Ind SpR Control 0.329 25 0.298 0.060 0.000 0.286 1.000 

 Intervention 0.330 21 0.241 0.052 0.000 0.250 0.875 

 All Groups 0.330 46 0.270 0.040 0.000 0.268 1.000 

Ind PlaR Control 0.453 20 0.272 0.061 0.000 0.417 1.000 

 Intervention 0.536 19 0.269 0.062 0.000 0.583 1.000 

 All Groups 0.493 39 0.270 0.043 0.000 0.429 1.000 
 

Although not statistically significant, the mean indicator values for the second round are 
consistently higher for both control and intervention fields for all the four biodiversity indicators 
with two sampling rounds.  Wild bee abundance and richness indicators increased between 
2021 and 2022, and in 2023 remained constant in the intervention fields, while in the control 
fields WBA slightly decreased and WBR increased, although not significantly in both cases. In 
the two years 2021 and 2022, the vascular plant species indicator PlaR remained constant in 
the control fields, while in the intervention fields there was a clear increase in 2022, although 
not statistically significant. 

The calibration of the predictive models and the assessment of estimation errors for both MLR 
and RF models were performed over the Dutch EBA dataset adopting the same set of 
predictors, which included also the terrain morphological attributes. Table 38 summarizes the 
MLR coefficients for the normalized biodiversity indicators to upscale field observations to the 
target land use over the entire CSA. The treatment dummy predictors are statistically 
significant only for the wild bee indicators, while the effect of seasonality (i.e. sampling round) 
was significant for both wild bee and spider indicators. The landscape structure variables 
expressed in terms of distance from the road network and from small woody features were 
significant predictors for almost all indicators.  

Adopting the same set of predictors for each indicator, RF models were calibrated for each 
indicator, providing also an assessment of the relevance of each predictor, expressed in term 
of node purity, and of its relative values (Table 39). The contribution of each predictor is 
graphically represented in Figure 41 for the five biodiversity indicators, with order of relevance 
increasing along the Y axis. Distance from the road network ranked among the most relevant 
predictors for WBA, SpR and PlaR, while distance from small woody features was moderately 
relevant only for WBR. Elevation played a major role for both spider indicators, while slope 
was relevant for the PlaR indicator. Among the RSI, reflectance in the infra-red and in the near 
infrared bands along with those in blue and the green bands ranked among the most relevant 
for nearly all indicators.  
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Table 38: Coefficients of the MLR calibrated for the normalized biodiversity indicators; 
significant coefficients in red (p <0.05) and blue (p>0.10) 

Predictors WBA WBR SpA SpR PlaR 

Intercept -0.072897 0.051816 0.368848 -0.107650 -0.575951 

Dummy Treat 0.109077 0.141194 0.011112 0.083860 0.045729 

Dummy Round -0.112772 -0.153117 0.161375 0.173590   
Dummy Year 1   -0.086327       
Road prox 0.000693     -0.000148 0.003122 

SWF prox   -0.000299 -0.000771   -0.000368 

Aspect         0.000917 

CatchArea   0.00000034 -0.000003     
CatchSlope     -4.845689 -1.988216   
Elevation     -0.002039 -0.000943   
TWI     -0.031668 0.046178   
IR 0.000021 0.000050 -0.000096 0.000013   
Irn     0.000203   0.000111 

NDVI       0.211364 0.498197 

SOSA 0.000046         
SOSI2 -0.000038     -0.000026   

 

Table 39: Relevance of RF predictors for the five biodiversity indicators in term of node purity; 
colors highlight the most relevant predictors (orange > brown >light brown) 

 

Predictors

Node purity Rel. % Node purity Rel. % Node purity Rel. % Node purity Rel. % Node purity Rel. %

dummy_treat      0.482 3.75% 0.695 3.69% 0.009 0.30% 0.011 0.36% 0.009 0.38%

dummy_location 0.197 1.54% 0.097 0.52%

dummy_y1         0.043 0.33% 0.113 0.60%

dummy_y2        0.093 0.72% 0.105 0.56%

dummy_r1       0.294 2.29% 0.241 1.28% 0.041 1.40% 0.033 1.11%

dummy_r2        0.162 1.26% 0.149 0.79%

swf_prox    0.387 3.02% 0.751 3.99% 0.055 1.89% 0.082 2.77% 0.082 3.29%

road_prox      0.622 4.85% 0.473 2.51% 0.078 2.67% 0.143 4.86% 0.266 10.71%

aspect           0.416 3.24% 0.898 4.77% 0.049 1.66% 0.052 1.77% 0.075 3.02%

elevation        0.492 3.83% 0.690 3.67% 0.185 6.30% 0.189 6.39% 0.082 3.28%

slope   0.500 3.90% 0.647 3.44% 0.262 8.93% 0.136 4.61% 0.128 5.14%

catchslope 0.413 3.22% 0.748 3.97% 0.167 5.72% 0.201 6.82% 0.074 2.95%

catcharea    0.532 4.14% 0.662 3.52% 0.070 2.39% 0.085 2.87% 0.078 3.12%

modcatchar 0.501 3.90% 0.711 3.78% 0.081 2.77% 0.096 3.27% 0.082 3.30%

twi            0.373 2.91% 0.615 3.27% 0.113 3.86% 0.216 7.30% 0.089 3.57%

valleydepth   0.472 3.68% 0.794 4.22% 0.141 4.80% 0.103 3.49% 0.074 2.99%

swir 0.428 3.34% 0.728 3.87% 0.054 1.83% 0.103 3.48% 0.090 3.63%

sosi3   0.522 4.07% 0.712 3.78% 0.120 4.11% 0.120 4.08% 0.074 2.99%

sosi2 0.488 3.80% 0.708 3.76% 0.098 3.36% 0.097 3.28% 0.127 5.12%

sosi1 0.512 3.99% 0.735 3.91% 0.135 4.60% 0.113 3.82% 0.064 2.56%

sosa 0.446 3.48% 0.715 3.80% 0.136 4.65% 0.102 3.45% 0.057 2.28%

red   0.547 4.27% 0.750 3.98% 0.103 3.51% 0.118 3.99% 0.075 3.00%

ndvi 0.491 3.82% 0.736 3.91% 0.135 4.60% 0.109 3.69% 0.119 4.77%

ndsi   0.393 3.06% 0.773 4.11% 0.048 1.64% 0.123 4.16% 0.086 3.45%

ndbsi 0.445 3.47% 0.646 3.43% 0.120 4.08% 0.118 3.99% 0.098 3.96%

irn 0.553 4.31% 0.829 4.41% 0.155 5.29% 0.095 3.20% 0.182 7.32%

ir    0.461 3.59% 0.748 3.97% 0.184 6.28% 0.098 3.33% 0.149 6.01%

green 0.562 4.38% 0.771 4.10% 0.100 3.43% 0.108 3.65% 0.062 2.49%

blue  0.573 4.46% 0.866 4.60% 0.170 5.79% 0.154 5.23% 0.078 3.14%

bi   0.435 3.39% 0.714 3.79% 0.121 4.14% 0.149 5.04% 0.188 7.55%

WBA Indicator WBR Indicator SpA Indicator SpR Indicator PlaR Indicator
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Figure 41. RF variable contribution plots for WBA (top left), WBR (top right) for SpA (middle left), 
SpR (middle right) and PlaR (bottom center) indicators. 

The RF predictors ranking suggests that the dummy variables used to include the 
implementation of  biodiversity management as a possible covariate for upscaling field results 
to the landscape scale, as well the impact of seasonality, are not relevant in the process of 
training the regression trees of the RF.   

The calibration error indices and the statistical measures of agreement between observed and 
estimated indicator values are reported in Table 40, and graphically depicted in figure 42.  
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Table 40: Calibration error indices for MLR and RF predictive model for the five biodiversity 
indicators 

Error WBA Indicator WBR Indicator SpA indicator SpR Indicator PlaR Indicator 
indices MLR RF MLR RF MLR RF MLR RF MLR RF 

ME  -0.002 -0.010 0.000 -0.004 -0.004 -0.007 0.000 -0.009 0.000 -0.003 
AE 0.074 0.154 0.127 0.211 0.081 0.174 0.152 0.227 0.139 0.215 
MSE 0.009 0.047 0.023 0.069 0.012 0.059 0.035 0.077 0.033 0.067 
RMSE 0.092 0.217 0.151 0.262 0.108 0.243 0.188 0.278 0.182 0.259 
IoA 0.780 0.287 0.754 0.229 0.927 0.533 0.694 0.138 0.821 0.301 
R2 0.487 0.079 0.411 0.052 0.769 0.191 0.361 0.011 0.534 0.070 

 

 
Figure 42: Calibration error indices for MLR and RF predictive model for the five biodiversity 
indicators in the Dutch EBA 

 

Again, as already observed in the other EBAs considered so far, the results suggest that MLR 
models better describe the relationships between the target data and the predictor variables 
compared to RF models.  

The MLR models were used to assess and map the five biodiversity indicators over the entire 
agricultural land area and raster statistics were calculated for each map to assess the average 
relative changes with respect to the baseline situation (year 1, control), and for each round the 
relative change due to the treatment implementation over the whole area. Although not 
realistic, this assessment provides a quantitative, spatial explicit and time dynamic evaluation 
of the potential impact of the biodiversity management practice implemented in the Dutch EBA.  

The spatiotemporal dynamics of the WBA indicator in response to environmental and 
anthropic drivers are presented in Figure 43; only results for 2022 and 2023 are shown. 
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Figure 43: Predicted WBA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Table 41 reports the descriptive statistics of the WBA indicator estimates over the whole target 
area (ca. 17,000 ha). Results highlight a positive trend with respect to the 2022 baseline 
(control), with an increase greater than 100% in the intervention fields during round 2. The 
increase due to the intervention with respect to the control was slightly more evident in the first 
year, in which values for the control were somewhat lower, with increases equal to 70 and 
43% in the first and the second round, respectively, while in the second year they were 65 and 
41%. The resulting average increase due to the intervention in the whole area was 55%. 

 

Table 41: WBA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

WBA 2022 r1 treatiszero 0.156 0.151 0.058 0.000 0.668 -   

WBA 2022 r1 treatisone 0.265 0.260 0.059 0.000 0.777 0.70 0.70 

WBA 2022 r2 treatiszero 0.255 0.248 0.059 0.000 0.544 0.63   

WBA 2022 r2 treatisone 0.364 0.357 0.059 0.099 0.653 1.33 0.43 

WBA 2023 r1 treatiszero 0.167 0.160 0.057 0.000 0.652 0.07   

WBA 2023 r1 treatisone 0.276 0.270 0.058 0.000 0.761 0.77 0.65 

WBA 2023 r2 treatiszero 0.268 0.262 0.056 0.000 0.773 0.72   

WBA 2023 r2 treatisone 0.377 0.371 0.056 0.105 0.882 1.42 0.41 

Average changes           0.80 0.55 
 

Table 42 reports the descriptive statistics of the WBR indicator estimates over the whole target 
area (ca. 17,000 ha) for the two rounds in the two years 2022 and 2023. The results show a 
positive trend with respect to the 2022 baseline (control), with strong increase in the second 
rounds of both 2022 and 2023 in the intervention fields. The increase due to the intervention 
with respect to the control was more evident in the first rounds, in which values for the control 
are close to 0.1, with increases equal to 146 and 135% in the first and the second year, 
respectively, while in the second rounds they were equal to 58% in both years. The resulting 
average increase due to the intervention in the whole area was 99%. The spatiotemporal 
dynamics of the WBA indicator in response to environmental and anthropic drivers are 
presented in Figure 44. 

 

Table 42: WBR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

WBR_2022_r1_treatiszero 0.096 0.096 0.053 0.000 1.000 -   

WBR_2022_r1_treatisone 0.237 0.238 0.054 0.000 1.000 1.46 1.46 

WBR_2022_r2_treatiszero 0.245 0.246 0.046 0.000 1.000 1.54   

WBR_2022_r2_treatisone 0.387 0.388 0.046 0.077 1.000 3.01 0.58 

WBR_2023_r1_treatiszero 0.104 0.103 0.056 0.000 1.000 0.08   

WBR_2023_r1_treatisone 0.245 0.245 0.057 0.000 1.000 1.54 1.35 

WBR_2023_r2_treatiszero 0.244 0.246 0.048 0.000 1.000 1.53   

WBR_2023_r2_treatisone 0.385 0.387 0.048 0.081 1.000 2.99 0.58 

Average changes           1.74 0.99 
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Figure 44: Predicted WBR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Table 43 reports the descriptive statistics of the SpA indicator estimates over the whole target 
area. The results highlight a consistently positive trend with respect to the 2022 baseline 
(control), with stronger increases in the indicator mean value in the second rounds of 2022 
and 2023 for both control and intervention fields, highlighting the relevance of seasonality. The 
increase in spider abundance due to the intervention with respect to the control was quite 
modest in all rounds of both years, being within 4 and 7%, with an average gain of 5%. The 
maps underlying the descriptive statistics presented in Table 43 are shown in Figure 45. 
 

Table 43: SpA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

SpA_2022_r1_treatiszero 0.099 0.042 0.124 0.000 0.841 -   

SpA_2022_r1_treatisone 0.105 0.053 0.128 0.000 0.853 0.07 0.07 

SpA_2022_r2_treatiszero 0.204 0.190 0.166 0.000 1.000 1.07   

SpA_2022_r2_treatisone 0.213 0.201 0.169 0.000 1.000 1.16 0.04 

SpA_2023_r1_treatiszero 0.104 0.042 0.133 0.000 0.721 0.05   

SpA_2023_r1_treatisone 0.110 0.053 0.136 0.000 0.732 0.12 0.06 

SpA_2023_r2_treatiszero 0.210 0.195 0.169 0.000 0.858 1.12   

SpA_2023_r2_treatisone 0.219 0.206 0.171 0.000 0.869 1.22 0.04 

Average changes           0.69 0.05 
 

The descriptive statistics presented in Table 44 refer to the SpR spatiotemporal estimates over 
the whole target area. The mean indicator values over the area were fairly constant for the 
same treatment and round in the two years of observations, with increases over the 2022 
baseline being of the same order of magnitude, i.e. ca 35% in the intervention fields at the first 
rounds, ca. 72% for the control fields at the second rounds, and >100% for the intervention 
fields at the second rounds. Similarly, the relative changes observed in the intervention fields 
with respect to the control fields were almost equal in the two years, with increases of ca. 30% 
and 20%, respectively, for the first and the second rounds, for an average gain in SpR of 27%. 
The maps used to assess the figures in Table 44 are depicted in Figure 46. 

 

Table 44: SpR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

SpR_2022_r1_treatiszero 0.242 0.240 0.132 0.000 0.724 -   

SpR_2022_r1_treatisone 0.323 0.324 0.138 0.000 0.808 0.33 0.33 

SpR_2022_r2_treatiszero 0.422 0.428 0.143 0.000 0.930 0.74   

SpR_2022_r2_treatisone 0.505 0.512 0.146 0.000 1.014 1.09 0.20 

SpR_2023_r1_treatiszero 0.248 0.245 0.137 0.000 0.765 0.03   

SpR_2023_r1_treatisone 0.329 0.329 0.143 0.000 0.848 0.36 0.33 

SpR_2023_r2_treatiszero 0.410 0.414 0.143 0.000 0.896 0.70   

SpR_2023_r2_treatisone 0.493 0.498 0.147 0.000 0.980 1.04 0.20 

Average changes           0.61 0.27 
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Figure 45: Predicted SpA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Figure 46: Predicted SpR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Table 45: PlaR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

PlaR_2022_r1_treatiszero 0.538 0.536 0.254 0.000 1.000 -   

PlaR_2022_r1_treatisone 0.580 0.582 0.250 0.000 1.000 0.08 0.079 

PlaR_2022_r2_treatiszero 0.555 0.541 0.236 0.000 1.000 0.03   

PlaR_2022_r2_treatisone 0.598 0.586 0.231 0.000 1.000 0.11 0.077 

PlaR_2023_r1_treatiszero 0.553 0.548 0.256 0.000 1.000 0.03   

PlaR_2023_r1_treatisone 0.595 0.594 0.251 0.000 1.000 0.11 0.076 

PlaR_2023_r2_treatiszero 0.529 0.519 0.244 0.000 1.000 -0.02   

PlaR_2023_r2_treatisone 0.572 0.565 0.240 0.000 1.000 0.06 0.081 

Average changes           0.06 0.078 
 

In the case of the PlaR indicator, the average gain in plant richness due to the in-field 
intervention to support biodiversity was consistent in the two rounds of the two years, being 
equal to ca. 8%, as shown in Table 45.  The relative changes with respect to the 2022 control 
baseline were always positive except for the 2023 second round for the control, which showed 
a relative -2% decrease. The greatest changes were observed in the intervention fields at the 
second round in 2022 and at the first round of 2023, with a gain of 11% in both cases. The 
maps showing the spatiotemporal dynamics of the indicator are shown in Figure 47. 

The final composite indicator describing the overall biodiversity indicator and its 
spatiotemporal dynamics over the Dutch CSA, have been calculated summing the estimates 
of the five core indicators for each round, and the sum eventually 0-1 normalized. The resulting 
maps are shown in Figure 48 and the raster statistics summarized in Table 46 along with the 
relative changes with respect to the baseline and for each round with respect to the control. 

Table 46: BioDiv indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

BioDiv_2022_r1_treatiszero 0.427 0.421 0.170 0.000 1.000 -   

BioDiv_2022_r1_treatisone 0.511 0.507 0.153 0.000 1.000 0.20 0.20 

BioDiv_2022_r2_treatiszero 0.513 0.508 0.146 0.000 1.000 0.20   

BioDiv_2022_r2_treatisone 0.535 0.531 0.142 0.000 1.000 0.25 0.04 

BioDiv_2023_r1_treatiszero 0.411 0.401 0.166 0.000 1.000 -0.04   

BioDiv_2023_r1_treatisone 0.480 0.472 0.150 0.000 1.000 0.12 0.17 

BioDiv_2023_r2_treatiszero 0.485 0.482 0.143 0.000 1.000 0.14   

BioDiv_2023_r2_treatisone 0.507 0.505 0.140 0.000 1.000 0.19 0.05 

Average changes           0.15 0.11 
 

On average the gain in biodiversity was more evident for the first rounds, with a relative 
increase of almost 20%, while for the second it is ca 5%, with an overall mean value of 11%. 
The trend with respect to the 2022 control baseline was always positive, except for the control 
fields in the first round of 2023 for which a mean decrease of -4% was estimated. The greatest 
gain was during the second round of 2022 with an increase of 25%, while the corresponding 
figure for 2023 was 19%. 
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Figure 47: Predicted PlaR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Figure 48: Predicted BioDiv indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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The overall joint trend of all the six indicators, with their synergies and trade-offs, is visually 
summarized in the radar graph depicted in Figure 49. The indicator values shown in the figure 
are averaged over the two rounds of each year. 

 

 

Figure 49: Radar graph of the round-averaged indicators for the control and the intervention in 
the two years of observation. 
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3.5 Swiss EBA 
 

The Swiss EBA fields are in the canton of Solothurn in northern Switzerland and the target 
area for the upscaling of biodiversity indicators at landscape scale is the agricultural land 
(19,662 ha) representing ca. 25% of the total area of the canton. The area presents a wide 
range of elevations from the alluvial plain of the Aare River (277 m a.s.l) to the foothills of the 
Jura massif (1,445 m a.s.l). Agricultural land use is characterized by small-scale and 
diversified farming systems. The average farm size in the canton of Solothurn is 23 ha and 
the average parcel size is 0.9 ha, resulting in a heterogeneous pattern of croplands and 
grasslands. The predominant agricultural land use is permanent grasslands which covers 
around 165 km2, i.e., 67% of the agricultural area in 2015, while rotational grasslands and 
arable land cover 14% and 32% of the cantonal area, respectively (FSO, 2015). The 
agricultural landscape is characterized by the presence of semi-natural elements, such as 
hedgerows, traditional orchards and sown wildflower strips. Agricultural production fields are 
interspersed with woodlots.  

 

 
Figure 50.  Geographical location of the Swiss CSA. 
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Following the SHOWCASE sampling protocol, the core indicator data were collected in two 
rounds (April and July) in 2022 and 2023 from eleven control fields with flower strips, and 
eleven intervention fields. Plant richness was sampled only once every year (first round). The 
descriptive statistics of the five biodiversity indicators are summarized in Table 47 for individual 
and species counts and their 0-1 normalized indicators for 2022, as the species identification 
for 2023 is still on-going at the time of writing this report. 

 
Table 47: Descriptive statistics of the five SHOWCASE core indicators  

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max 
Counts               
WBA 84 2.3 5.1 0.6 0 0 24 

WBR 83 0.6 1.0 0.1 0 0 4 

SpA 74 16.8 21.1 2.5 0 8 123 

SpR 73 3.8 3.1 0.4 0 3 12 

PlaR 45 12.6 7.3 1.1 2 11 33 

Indicator (0-1) 
  

  
 

 
 

Ind WBA 84 0.106 0.230 0.025 0 0.000 1 

Ind WBR 83 0.196 0.317 0.035 0 0.000 1 

Ind SpA 74 0.186 0.195 0.023 0 0.159 1 

Ind SpR 74 0.346 0.272 0.032 0 0.333 1 

Ind PlaR 45 0.341 0.235 0.035 0 0.290 1 

 

Table 48 summarizes the descriptive statistics of the five normalized indicators for the control 
and intervention fields; statistically significant differences (p< 0.05) in indicator mean values 
were detected for WBA, WBR and PlaR indicators, with higher mean values observed for the 
intervention fields and lower for the control fields. As for the spider indicators, SpA was slightly 
higher in the control fields, while the opposite was observed for SpR. Likewise, in term of 
location along the transect, mean indicator values were significantly higher at the field margins 
than in the field center for WBA (0.197 vs. 0.007), WBR (0.324 vs.0.051) and PlaR (0.456 vs. 
0.231) but not for spiders, with both mean SpA and SpR indicators higher at the field center 
(0.155 and 0.219) than at the field margins (0.289 and 0.405). Similar responses were 
observed in both control and intervention fields with significantly higher mean indicator values 
for WBA, WBR and PlaR at the field margins detected in the intervention fields but not in the 
control ones; nevertheless, indicator values were always higher at the field margins. In the 
case of PlaR indicator, the differences in mean values were significant also in the control fields.  

The mean sampling round values for the bee indicators were consistent in the control fields 
for both WBA and WBR, while in the intervention fields the mean values observed during the 
second round were somewhat lower in the case of WBA (0.207 and 0.180 respectively) and 
remarkably lower in the case of WBR (0.375 and 0.227 respectively). In the case of the spider 
indicators, a clear increase was observed for both indicators in the control sites, which was 
particularly evident for SpR (0.248 and 0.396 respectively at round 1 and 2), while at the 
intervention sites values remained almost constant over the season. 
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Table 48: Descriptive statistics of the five SHOWCASE core indicators in the control and 
intervention fields of the Hungarian EBA  

 Indicator Treatment Means N Std.Dev. Std.Err. Min Median Max 
Ind WBA Control 0.015 41 0.039 0.006 0.00 0.000 0.21 

 Intervention 0.193 43 0.296 0.045 0.00 0.000 1.00 

 All Groups 0.106 84 0.230 0.025 0.00 0.000 1.00 

Ind WBR Control 0.091 41 0.215 0.034 0.00 0.000 1.00 

 Intervention 0.298 42 0.367 0.057 0.00 0.000 1.00 

 All Groups 0.196 83 0.317 0.035 0.00 0.000 1.00 

Ind SpA Control 0.191 37 0.209 0.034 0.00 0.130 1.00 

 Intervention 0.181 37 0.183 0.030 0.00 0.171 1.00 

 All Groups 0.186 74 0.195 0.023 0.00 0.159 1.00 

Ind SpR Control 0.328 37 0.282 0.046 0.00 0.250 1.00 

 Intervention 0.363 37 0.265 0.044 0.00 0.333 1.00 

 All Groups 0.346 74 0.272 0.032 0.00 0.333 1.00 

Ind PlaR Control 0.270 22 0.211 0.045 0.00 0.242 0.71 

 Intervention 0.410 23 0.241 0.050 0.00 0.355 1.00 

 All Groups 0.341 45 0.235 0.035 0.00 0.290 1.00 
 

The relevance of each single predictor in the RF models is presented in Table 49 and Figure 
51.  

Table 49: Relevance of RF predictors for the five biodiversity indicators in term of node purity; 
colors highlight the most relevant predictors (orange > brown >light brown) 
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Figure 51. RF variable contribution plots for WBA (top left), WBR (top right) for SpA (middle left), 
SpR (middle right) and PlaR (bottom center) indicators. 

In terms of RF predictor relevance, terrain attributes had a relevant impact on all indicators, in 
particular aspect, slope and catchment slope, TWI and valley depth. As observed in all the 
other EBA indicators datasets, the dummy variables accounting for treatment and seasonality 
ranked very low in their relevance as predictors. Remote sensing indices and spectral bands 
reflectance played a very minor role for bee indicators, while in the case of spiders and 
vascular plants they were relevant predictors, particularly SoSI2, red, NDVI, IRn and IR. 

Table 50 summarizes the results of the MLR model calibration, reporting the coefficient of the 
regressions for the spatiotemporal prediction of the five biodiversity indicators. The dummy 
variable indicating the effect of treatment was statistically significant (p<0.05) for all indicators 
except for SpA, while effect of seasonality was negative and significant for WBR and positive, 
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although statistically not significant, for SpA and PlaR. The effects of the distance to the road 
network (and to the field margins as well) was significant and negative for WBA, WBR and 
PlaR, and positive for SpR (i.e. more species richness in the center of the fields). Among the 
terrain derived predictors, aspect was relevant to all indicators and statistically significant for 
all excepted SpR. In addition, slope, catchment slope and TWI were selected as predictors by 
the stepwise procedure for nearly all indicators. Among the RSI, the reflectance in the near 
infrared was positively and significantly correlated with WBA and WBR, while SpA responded 
significantly to the reflectance in the infrared band. Both SpA and SpR were negatively and 
significantly correlated with NDVI. 

 

Table 50: Coefficients of the MLR calibrated for the normalized biodiversity indicators; 
significant coefficients in red (p <0.05) and blue (p>0.10) 

Predictors WBA WBR SpA SpR PlaR 
Intercept 0.91752 -1.12491 4.00139 -0.63858 -1.37192 
Dummy treat 0.14139 0.18810 -0.04494 0.09048 0.23449 
Dummy round   -0.09612 0.04654   0.25425 
road prox -0.00169 -0.00245   0.00198 -0.00248 
swf prox   0.00035 -0.00028 -0.00073   
aspect 0.00073 0.00074 0.00049 0.00036 -0.00100 
catcharea     0.00001 0.00001 -0.00001 
catchslope -2.34530 -0.86062   -2.70298 7.12782 
elevation -0.00048         
modcatchar     -0.00001     
slope     0.02781 0.06639 -0.02991 
twi -0.15845   0.11403 0.05555 0.20659 
valley depth     -0.00032     
green     -0.00059     
IR     0.00113     
IRn 0.00027 0.00040       
NDBSI     -0.40685     
NDSI         0.15577 
NDVI     -11.61398 -1.03900 -0.37497 
red     -0.00206     
SOSI2 0.00025 0.00024   -0.00029 -0.00004 

 

 

The results of the comparison of the predictive performance of the two approaches is 
summarized in Table 51 and graphically shown in Figure 52. Again, as observed in all of the 
other EBAs, MLR outperform RF in terms of lower calibration errors and higher values for 
indices of agreement between observed and estimated data. The only exception was 
observed for the WBA indicator: in this case the value of R2 was higher for the RF estimates 
(0.592) than for the MLR ones (0.565) and the ME was lower for the RF than for the MLR, with 
all the other error indices and the IoA lower and higher, respectively, for MLR than for RF. It 
is worth noting that the value of IoA was negative in the case of RF prediction for the PlaR 
indicator, indicating a negative relationship between observed and predicted indicator values. 
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Table 51: Calibration error indices for MLR and RF predictive model for the five biodiversity 
indicators 

Error WBA Indicator WBR Indicator SpA indicator SpR Indicator PlaR Indicator 
indices RF MLR RF MLR RF MLR RF MLR RF MLR 

ME  -0.006 -0.019 -0.007 -0.019 -0.003 -0.001 0.000 0.000 0.006 0.000 
AE 0.116 0.096 0.208 0.128 0.118 0.091 0.184 0.114 0.209 0.144 
RMSE 0.170 0.155 0.271 0.176 0.184 0.131 0.241 0.145 0.253 0.175 
R2 0.592 0.565 0.278 0.641 0.113 0.543 0.208 0.692 0.060 0.435 
MSR 0.029 0.024 0.073 0.031 0.034 0.017 0.058 0.021 0.064 0.030 
IoA 0.684 0.803 0.522 0.853 0.400 0.825 0.524 0.900 -0.258 0.755 

 

 
Figure 52: Calibration error indices for MLR and RF predictive model for the five biodiversity 
indicators in the Swiss EBA 

 

Table 52: WBA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

WBA 2022 r1 treatiszero 0.050 0.000 0.075 0.000 1.000 -   

WBA 2022 r1 treatisone 0.139 0.129 0.120 0.000 1.000 1.80 1.80 

WBA 2022 r2 treatiszero 0.049 0.000 0.075 0.000 1.000 -0.01   

WBA 2022 r2 treatisone 0.137 0.124 0.121 0.000 1.000 1.75 1.79 

WBA 2023 r1 treatiszero 0.091 0.000 0.157 0.000 1.000 0.84   

WBA 2023 r1 treatisone 0.167 0.097 0.201 0.000 1.000 2.37 0.83 

WBA 2023 r2 treatiszero 0.051 0.000 0.077 0.000 0.485 0.03   

WBA 2023 r2 treatisone 0.141 0.130 0.122 0.000 0.626 1.85 1.76 

Average changes           1.23 1.54 
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Figure 53: Predicted WBA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Table 52 summarizes the raster statistics for the WBA indicator estimates over the whole 
target area (16,662 ha). The results highlight that in 2022 the increase in the indicator value 
due to the intervention was almost equal in both rounds, i.e. ca. 180%, while in 2023 the 
increase in the second round was more than double with respect to the first one. The average 
gain due to the intervention was >150%. The sign of the trend with respect to the baseline was 
always positive, except for the control fields in the second round of 2022, with a decrease of -
1%; the corresponding figure in 2023 was a small increase of 3%. The raster maps depicting 
the WBA indicator spatiotemporal variability are presented in figure 53.  

 

Table 53: WBR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

WBA 2022 r1 treatiszero 0.185 0.167 0.158 0.000 1.000 -   

WBA 2022 r1 treatisone 0.352 0.355 0.187 0.000 1.000 0.91 0.91 

WBA 2022 r2 treatiszero 0.100 0.047 0.125 0.000 0.784 -0.46   

WBA 2022 r2 treatisone 0.243 0.235 0.171 0.000 0.972 0.31 1.43 

WBA 2023 r1 treatiszero 0.215 0.137 0.244 0.000 1.000 0.16   

WBA 2023 r1 treatisone 0.355 0.325 0.281 0.000 1.000 0.92 0.65 

WBA 2023 r2 treatiszero 0.111 0.072 0.121 0.000 0.710 -0.40   

WBA 2023 r2 treatisone 0.264 0.260 0.162 0.000 0.898 0.43 1.38 

Average changes           0.27 1.09 
 

The raster statistics for the WBR indicator are summarized in Table 53. The gain in terms of 
average increase of the indicator was similar in the two years and more evident in the second 
rounds with values around 140%, while for the first rounds the increase was equal to 90% in 
2020 and 65% in 2023. With respect to the control baseline of the first round in 2022, the 
average gain was ca. 30%, with a decrease in the average indicator values observed in the 
control fields at the second round in both years, equal to -46 and -40% in 2022 and 2023, 
respectively. The spatiotemporal dynamics of the WBR indicator is illustrated in Figure 54, 
which shows the predicted indicator maps for the two rounds in the two years for control and 
treatment management scenarios. 
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Figure 54: Predicted WBR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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The raster statistics for the spider indicators are summarized in Tables 54 and 55 for the 
abundance and the richness indicators, respectively. 

Table 54: SpA indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

SpA_2022_r1_treatiszero 0.235 0.193 0.208 0.000 1.000 -   

SpA_2022_r1_treatisone 0.197 0.148 0.202 0.000 1.000 -0.16 -0.16 

SpA_2022_r2_treatiszero 0.242 0.216 0.184 0.000 1.000 0.03   

SpA_2022_r2_treatisone 0.202 0.171 0.177 0.000 1.000 -0.14 -0.16 

SpA_2023_r1_treatiszero 0.286 0.230 0.252 0.000 1.000 0.22   

SpA_2023_r1_treatisone 0.249 0.185 0.247 0.000 1.000 0.06 -0.13 

SpA_2023_r2_treatiszero 0.230 0.213 0.171 0.000 1.000 -0.02   

SpA_2023_r2_treatisone 0.191 0.168 0.164 0.000 1.000 -0.19 -0.17 

Average changes           -0.03 -0.15 
 

As for the SpA indicator, the results highlight a negative impact of the intervention in all rounds 
and years, with a fairly constant decrease of the mean indicator value of -15%. With respect 
to the baseline, a 3% increase was observed in the control fields at the second round of 2022, 
while in 2023 positive gains were estimated for the first round in both control and intervention 
fields, with average increases equal to 22 and 6%, respectively. The raster maps underpinning 
the statistics in Table 54 are shown in Figure 55. 

The impacts of the intervention and of the spatiotemporal dynamics were quite different for 
the SpR indicator. In this case we estimated an average increase of 28% in the mean value 
of the indicator in the intervention fields, with constant gains over rounds and years, as 
observed in the case of the abundance indicator. Likewise, the trend with respect to the 
baseline was always positive, excepted for the first round of the second year in the control 
fields where a -1% average decrease was predicted. The increase in the intervention fields 
was more evident in the second round of the second year, with a 45% average gain, while it 
was equal to or <30% in all other cases.  During the second round of the second year, a 15% 
increase was estimated for the control fields as well. Figure 56 portrays the eight maps of the 
SpR indicator for the control and the intervention scenarios in the two rounds of 2022 and 
2023.   

 

Table 55: SpR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

SpR_2022_r1_treatiszero 0.276 0.245 0.226 0.000 1.000 -   

SpR_2022_r1_treatisone 0.355 0.336 0.234 0.000 1.000 0.29 0.29 

SpR_2022_r2_treatiszero 0.279 0.250 0.220 0.000 1.000 0.01   

SpR_2022_r2_treatisone 0.359 0.341 0.227 0.000 1.000 0.30 0.29 

SpR_2023_r1_treatiszero 0.274 0.236 0.242 0.000 1.000 -0.01   

SpR_2023_r1_treatisone 0.351 0.327 0.251 0.000 1.000 0.27 0.28 

SpR_2023_r2_treatiszero 0.316 0.294 0.223 0.000 1.000 0.15   

SpR_2023_r2_treatisone 0.398 0.385 0.227 0.000 1.000 0.45 0.26 

Average changes           0.21 0.28 
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Figure 55: Predicted SpA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention. 
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Figure 56: Predicted SpR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention 
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The descriptive statistics for the plant richness indicator PlaR are summarized in Table 56. 
The average increases in the indicator mean values were very similar in the two years, and in 
the first rounds these were almost double with respect to the second, with gains of ca. 60% 
and 34% respectively for the first and the second rounds. The average increase in the PlaR 
indicator resulting from the intervention was equal to 47%. Apart from the first round of 2023 
in the control fields, which exhibited a decrease equal to -2%, the changes with respect to the 
baseline were always positive and nearly equal in the two years: for the intervention at rounds 
1, ca. 60%, for the control at rounds 2, ca. 60%, and for the intervention at rounds 2, >125%.  
The raster maps underlying the zonal statistics presented in the table are shown in Figure 56.  

 

Table 56: PlaR indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

PlaR_2022_r1_treatiszero 0.330 0.256 0.298 0.000 1.000 -   

PlaR_2022_r1_treatisone 0.528 0.491 0.271 0.000 1.000 0.60 0.60 

PlaR_2022_r2_treatiszero 0.555 0.523 0.266 0.000 1.000 0.68   

PlaR_2022_r2_treatisone 0.746 0.757 0.216 0.000 1.000 1.26 0.34 

PlaR_2023_r1_treatiszero 0.323 0.246 0.300 0.000 1.000 -0.02   

PlaR_2023_r1_treatisone 0.520 0.480 0.274 0.000 1.000 0.57 0.61 

PlaR_2023_r2_treatiszero 0.564 0.532 0.264 0.000 1.000 0.71   

PlaR_2023_r2_treatisone 0.753 0.767 0.213 0.000 1.000 1.28 0.34 

Average changes           0.72 0.47 
 

From the sum of the five biodiversity indicators for each round of sampling and for the two 
years considered, the combined biodiversity indices were calculated, 0-1 normalized and 
mapped, as shown in Figure 58. The rasters were used as the basis to calculate zonal 
statistics for the target land use area, which are presented in Table 57.  

 

Table 57: BioDiv indicator raster statistics and relative changes with respect to the baseline and 
to the control of each round. 

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T 

BioDiv_2022_r1_treatiszero 0.330 0.311 0.135 0.000 1.000 -   

BioDiv_2022_r1_treatisone 0.409 0.394 0.126 0.000 1.000 0.24 0.24 

BioDiv_2022_r2_treatiszero 0.339 0.316 0.131 0.000 1.000 0.03   

BioDiv_2022_r2_treatisone 0.364 0.353 0.127 0.000 1.000 0.10 0.08 

BioDiv_2023_r1_treatiszero 0.321 0.303 0.147 0.000 1.000 -0.03   

BioDiv_2023_r1_treatisone 0.359 0.348 0.143 0.000 1.000 0.09 0.12 

BioDiv_2023_r2_treatiszero 0.378 0.354 0.126 0.000 1.000 0.15   

BioDiv_2023_r2_treatisone 0.435 0.425 0.125 0.000 1.000 0.32 0.15 

Average changes           0.13 0.15 
 

The overall average biodiversity gain resulting from the implementation of the biodiversity 
friendly management practice was equal to 15%, with similar values in the two rounds of 2023, 
while in 2022 the gain for the first round (24%) was three times as much that of the second 
round (8%).  
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Figure 57: Predicted PlaR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second 
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: 
Intervention 
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Figure 58: BioDiv indicator maps (res. 10 m) for round 1 (first row) and round 2 (second row) in 
2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: Intervention 

 

C I 

C I 

C I 

C I 



98 | Page  D2.7: Multiscale spatiotemporal modelling of biodiversity indicators 
_________________________________________________________________________ 

 

The overall trend of the BioDiv composite indicator with respect to the baseline is 
characterized by positive values except for a -3% decrease estimated for the control scenario 
in the first round of 2023. For the intervention scenario, the highest increase was observed in 
the second round of 2023 with a gain above 30%, while for the control scenario there was a 
15% increase for the same round of the second year. The overall annual trends of the six 
upscaled indicators, averaged over the rounds of each year, are shown in Figure 59.   

 

 

Figure 59: Radar graph of the estimates of the round-averaged indicators for the control and the 
intervention in the two years of observation. 
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4. Comparing mechanistic and data driven model results for 
pollinator occurrence in five EBAs 

 
The mechanistic model of Lonsdorf et al. (2009) as implemented in Zulian et al. (2013) was 
applied in the five selected upscale CSAs encompassing the SHOWCASE EBAs to estimate 
pollinator abundance. The model provided as output a spatially explicit dimensionless score 
with values ranging from 0 to 1, describing the expected relative pollinator abundance to a 
given location across the landscape, i.e. the pollinator abundance for each pixel. This allowed 
the comparison with the WBA indicator inferred for the same CSAs via MLRs. Results are 
summarized in Table 58, where the model results are compared with the data driven approach 
results for the control scenarios. Descriptive statistics are also provided for the estimated WBA 
indicator means over the two rounds of the two years, and these figures for the five CSAs are 
compared with the mean scores and visually displayed in Figure 60. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60: Radar graph and scatterplot comparing the WBA indicator estimates of the 
mechanistic model of Lonsdorf et al. (2009) with the data driven models calibrate for each EBAs. 

 
In average terms, i.e. considering the mean value WBA indicators for the two rounds of the 
two years, the estimates over the whole area are almost equal for the Spanish CSA, with an 
average difference in the score values equal to 0.009 and a relative difference with respect to 
the mechanistic model score of 5.2%, i.e. a slight overestimation.  In all the other CSAs the 
difference is greater, with a 33.6% overestimation in the Portuguese CSA and a 67.1% 
underestimation in the Dutch CSA. In the Hungarian, and to a less extent in the Swiss CSA, 
the mechanistic model again returns pollinator abundance scores smaller than the average 
ones estimated via the data driven approach under the control scenario.  
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Table 58: WBA indicator values and pollinator abundance estimated with the mechanistic model  
 

EBA Country Year Round Mean Median Std. Dev. Min. Max. Mean Diff Rel. Diff. 

CH Solothurn                   

Lonsdorf 2009     0.047 0.047 0.125 0.005 0.829     

  2022 1 0.050 0.000 0.075 0.000 1.000 -0.003 -6.1% 

  2022 2 0.049 0.000 0.075 0.000 1.000 -0.002 -4.8% 

  2023 1 0.091 0.000 0.157 0.000 1.000 -0.045 -95.8% 

  2023 2 0.051 0.000 0.077 0.000 0.485 -0.004 -9.6% 

Mean control     0.060 0.000 0.096 0.000 0.871 -0.014 -29.1% 

NL Zuid Limburg                   

Lonsdorf 2009     0.127 0.153 0.104 0.005 0.787     

  2022 1 0.156 0.151 0.058 0.000 0.668 -0.030 -23.3% 

  2022 2 0.255 0.248 0.059 0.000 0.544 -0.208 -101.2% 

  2023 1 0.167 0.160 0.057 0.000 0.652 -0.120 -31.8% 

  2023 2 0.268 0.262 0.056 0.000 0.773 -0.222 -111.9% 

Mean control     0.211 0.206 0.058 0.000 0.659 -0.165 -67.1% 

PT Alentejo                   

Lonsdorf 2009     0.208 0.230 0.130 0.005 0.891     

  2022 1 0.076 0.061 0.074 0.000 0.726 0.133 63.6% 

  2022 2 0.016 0.000 0.036 0.000 0.468 0.192 92.1% 

  2023 1 0.222 0.219 0.096 0.000 0.822 -0.014 -6.6% 

  2023 2 0.239 0.227 0.131 0.000 1.000 -0.031 -14.8% 

Mean control     0.138 0.127 0.084 0.000 0.754 0.070 33.6% 

ES Guadalquivida                   

Lonsdorf 2009     0.172 0.237 0.118 0.005 0.899     

  2022 1 0.089 0.084 0.072 0.000 1.000 0.082 47.9% 

  2022 2 0.052 0.038 0.055 0.000 0.977 0.120 69.7% 

  2023 1 0.291 0.294 0.080 0.000 1.000 -0.119 -69.4% 

  2023 2 0.219 0.221 0.076 0.000 1.000 -0.047 -27.3% 

Mean control     0.163 0.159 0.071 0.000 0.994 0.009 5.2% 

HU Kiskunság                    

Lonsdorf 2009     0.060 0.010 0.156 0.005 0.822     

  2022 1 0.079 0.053 0.086 0.000 0.891 -0.019 -30.7% 

  2022 2 0.137 0.125 0.109 0.000 0.825 -0.076 -126.8% 

  2023 1 0.068 0.034 0.079 0.000 0.683 -0.007 -12.1% 

  2023 2 0.127 0.127 0.105 0.000 0.670 -0.067 -111.5% 

Mean control     0.103 0.085 0.095 0.000 0.767 -0.042 -70.3% 
 

As both models provide spatially explicit outputs, it is interesting not only considering the mean 
estimated values over the entire CSAs but also the difference in the spatial patterns of the 
estimated pollinator abundance.  Figure 60 shows the estimated pollinator abundance with 
the two approaches; to highlight the differences in the spatial distributions the raster maps are 
displayed using a first legend with equal intervals and a second one based on the deciles of 
the estimated distribution. In addition, a map displaying the relative differences between the 
two results is provided, to highlights the occurrence of positive and negative differences with 
respect to the mechanistic model. 
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Figure 61: Comparison of estimated pollinator abundance in the Hungarian CSA: mechanistic 
model outputs (left), data driven output s(center) and relative differences with respect to the 
averaged outputs of the data driven model for the control scenario (right). 

As can be seen in Figure 61, the relative differences were positive in most of the non-irrigated 
arable land use (81% of the area) with a systematic underestimation of pollinator abundance 
by the mechanistic model (average score 0.018) with respect to the data driven one (average 
score for the control scenario equal to 0.066). In the area under pasture (17.5% of the area) 
again the mechanistic model provided estimates which were significantly lower (average 
0.068) than those estimated with the data driven model (average 0.104) and the same was 
observed for the area with complex cultivation patterns, representing ca. 0.6% of the area: 
here the mechanistic model returned an average score equal to 0.120, while the data driven 
estimates for the controls were equal to 0.163. Only for the land principally occupied by 
agriculture with significant areas of natural vegetation (ca. 0.9% of the total area), the 
mechanistic model provided higher pollinator abundance estimates, with an average score 
equal to 0.444 against the 0.144 provided by the data driven model. Results, and differences, 
are strongly determined by the scores that the model adopts for the different CLC classes to 
estimate nesting and flowering suitability for the pollinators. Furthermore, there was also an 
effect of the coarser resolution of the climate variables in determining pollinator activity, as it 
is evident from the raster map displaying the deciles of the estimated distribution of pollinator 
abundance with the mechanistic model (Figure 60, bottom left), with increasing values from 
north to south. 

Figure 62 shows the relative differences between the two approaches for the target land use 
(i.e., permanent fruit orchards) for the Spanish CSAs; the figure displays the pollinator 
abundance map resulting from the two approaches. 
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Figure 62: Comparison of estimated pollinator abundance in the Spanish CSA: mechanistic 
model outputs (top left), data driven outputs (top right) and relative differences with respect to 
the averaged outputs of the data driven model for the control scenario (bottom). 

The mechanistic model returned overall higher values for the target area (0.172) when 
compared to the control MLR estimates for 2022 (0.089), but lower than that of 2023 (0.291). 
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When averaging all the control fields across all years and rounds (0.163), the two estimates 
were very similar, but the spatial patterns were quite different. According to the mechanistic 
model, higher pollinator abundance occurred north of the river stream, in the western part of 
the area, while according to the MLR predictions higher abundance was estimated south of 
the river in the central part of the CSA, where higher discrepancies between the predictions of 
the two models were observed. 

 
Figure 63: Comparison of estimated pollinator abundance in the Portuguese CSA: mechanistic 
model outputs (left), data driven outputs (center) and relative differences with respect to the 
averaged outputs of the data driven model for the control scenario (right). 

In the Portuguese CSA, the mechanistic model provided higher estimates (0.208) with respect 
to the averaged outputs for the control scenarios predicted with the data driven approach 
(0.138). This is in great part due to the very low values estimated for the two rounds of 2022 
(average 0.042) which were characterized by an extremely severe drought, the effects of 
which cannot be considered by the mechanistic model. This explanation could be supported 
by the fact that in 2023 average MLR estimates were very close to the predictions of the 
mechanistic model (0.231).  Furthermore, from Figure 63 a north-south gradient in relative 
difference in model results appears very clearly, with the data driven model providing results 
well below those of the mechanistic approach in the north and in the center of the CSA, while 
positive differences are evident in the south-western part. Targeting only one land use class 
(i.e. permanent orchard) and considering that the CSAs spans over more than 100 km from 
north to south, it is likely that a key role is played by the climatic drivers used in the mechanistic 
model to consider the effect of weather on pollinator activity.  
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Results for the Dutch CSA are illustrated in Figure 64, which shows the output raster maps 
using a common legend with equal intervals and a legend with the deciles of the estimated 
distributions, and the relative differences between the two results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64: Comparison of estimated pollinator abundance in the Dutch CSA: mechanistic model 
outputs (top left), data driven outputs (top right) and relative differences with respect to the 
averaged outputs of the data driven model for the control scenario (bottom). 
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In this case results of the two approaches were similar when considering only the first rounds 
of data driven outputs for the control scenarios, which returned an average pollinator 
abundance equal to 0.16, which is close to the score of 0.13 provided by the mechanistic 
model. The spatial pattern of the relative differences between the two results displays two 
distinct features: large continuous areas where the MLR estimates were more than double 
those provided by the mechanistic model and smaller patches with a “bull’s eye” pattern 
particularly evident at the center of the large agricultural fields. The former pattern is likely to 
be due to the combined effects of average temperature and solar radiation, which the 
mechanistic model uses to account for the effect of weather on pollinator activity. The latter 
pattern is likely due to the MLR model which includes the distance from the road network as 
significant predictor of pollinator abundance, which in the case of the in-field intervention in 
the Dutch EBA fields, increases with increasing distance from the margin of the fields, being 
particularly evident in the case of large fields. 

For the Swiss CSA, Table 58 shows that the results provided by the two models are similar in 
both rounds of 2022, being equal to 0.047 for the mechanistic model and 0.050 and 0.049 for 
the MLR model for the first and the second round, respectively. In 2023 the estimates of the 
data driven approach were higher for the first round (0.091), but again quite close to those of 
the mechanistic model in the second (0.051).  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 65: Comparison of estimated pollinator abundance in the Swiss CSA: mechanistic model 
outputs (left), data driven outputs (right). 
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In the maps shown in Figure 65 the differences between the two results appear to be difficult 
to detect using the same regular interval scale, being in both cases characterized by low 
occurrence values almost everywhere in the CSA. When using the deciles of the estimated 
abundance distribution, the differences in the spatial patterns were more evident, and in the 
case of the mechanistic model there was a dominant regional trend with decreasing values 
from the south-west to the north-east of the area, while in the case of the data driven approach 
the overall spatial trend was determined by the role played by elevation and terrain slope. 
Similar results have been found by Le Clec'h et al. (2019) who calibrated a data driven model 
to estimate pollinator abundance in the grasslands of the same CSA using MLR.  The 
distribution of the relative differences between the data driven results and those of the 
mechanistic model with respect to the latter are shown in Figure 66.  

 

 
Figure 66: Comparison of estimated pollinator abundance in the Swiss CSA: relative differences 
between the data driven results and those of the mechanistic model with respect to the latter. 
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5. Discussion  
The results presented in this Deliverable report provide an improved understanding of the 
potential impacts at the regional scale of the implementation of biodiversity management at 
the field scale. The MLR predictive models calibrated on field data delivered spatially explicit 
and time dynamic assessments of biodiversity indicators, highlighting the role played by the 
different drivers, and allowed for an assessment of the potential biodiversity gains resulting 
from the interventions in the specific context of each EBA.  

 

5.1. Biodiversity indicators: comparing the five EBAs responses to biodiversity 
management 
 

Using 0-1 interval normalised indicators allowed trends to be easily detected over time and 
space, the assessment of relative differences with respect to a baseline or a reference state, 
represented by the upscaling results for the control scenarios, and the comparison of results 
averaged over large areas among different CSAs. The following figures show the round 
averaged values and the relative differences of the indicators under the two biodiversity 
management scenarios in the five CSAs considered for the analysis. Average indicator values 
and their relative changes are summarized  in Table 59.  

 
Figure 67: Average values in WBA and WBR indicators in the five EBAs in 2022 and 2023 and 
yearly relative differences (RI)  due to the biodiversity management intervention  
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Table 59: Average biodiversity indicators in the five EBAs in 2022 and 2023 and relative 
differences due to the implementation of biodiversity management.  

 

Indicator Country 2022_C 2022_I 2023_C 2023_I REL_I 2022 REL_I 2023 

WBA HU 0.11 0.19 0.10 0.18 76% 82% 

  ES 0.07 0.20 0.25 0.34 180% 35% 

  PT 0.05 0.15 0.23 0.37 221% 60% 

  NL 0.21 0.31 0.22 0.33 53% 50% 

  CH 0.05 0.14 0.07 0.15 179% 116% 

WBR HU 0.12 0.27 0.16 0.32 119% 95% 

  ES 0.27 0.58 0.27 0.58 118% 114% 

  PT 0.14 0.38 0.26 0.56 170% 112% 

  NL 0.17 0.31 0.17 0.31 82% 81% 

  CH 0.14 0.30 0.16 0.31 109% 90% 

SpA HU 0.10 0.10 0.15 0.14 -3% -2% 

  ES 0.19 0.17 0.11 0.12 -11% 7% 

  PT 0.16 0.14 0.22 0.19 -12% -14% 

  NL 0.15 0.16 0.16 0.16 5% 5% 

  CH 0.20 0.16 0.22 0.18 -22% -20% 

SpR HU 0.35 0.31 0.21 0.17 -13% -18% 

  ES 0.23 0.25 0.22 0.24 6% 6% 

  PT 0.28 0.30 0.25 0.26 5% 6% 

  NL 0.33 0.41 0.33 0.41 25% 25% 

  CH 0.28 0.36 0.30 0.37 29% 27% 

PlaR HU 0.22 0.42 0.20 0.41 93% 106% 

  ES 0.32 0.41 0.55 0.65 29% 17% 

  PT 0.54 0.63 0.77 0.86 17% 12% 

  NL 0.55 0.59 0.54 0.58 8% 8% 

  CH 0.44 0.64 0.44 0.64 44% 44% 

BioDiv HU 0.26 0.36 0.24 0.33 36% 37% 

  ES 0.26 0.35 0.30 0.40 33% 35% 

  PT 0.33 0.37 0.35 0.42 14% 20% 

  NL 0.47 0.52 0.45 0.49 11% 10% 

  CH 0.33 0.39 0.35 0.40 16% 14% 
 

From the results in the table and trends shown in Figure 67, in the first year the highest relative 
increase in WBA mean indicator values were detected in the permanent orchards of Portugal 
and Spain, whose indicator values for the control baseline in 2022 are the lowest among the 
five EBAs. It is worth noting that the values for the intervention scenario in 2022 for these two 
CSAs were even lower than those for the control scenario in 2023.   The figures were indeed 
quite similar in the Swiss CSA, with a very low WBA indicator value in the control of 2022 and 
a strong increase due to the intervention.  In 2023, the relative increases estimated for the 
Portuguese and Spanish EBAs are much lower, as there was a general increase of the WBA 
indicator in both the control and intervention. The highest relative increase was observed in 
the Swiss EBA, for which the value of the WBA indicator for the control was only slightly higher 
than in the previous year. Relative changes in the Netherlands were constant in the two years, 
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while in the Hungarian EBA there was an increase in 2023 with respect to 2022. For the WBR 
indicator, the relative increases were quite similar for the two years in all CSAs, with slightly 
higher values in 2022 in all cases. Again, higher relative increases were estimated for the 
permanent orchard of Andalucia and Alentejo, and lower ones for the in-field intervention in 
the arable fields of Zuid Limburg. The bee indicators are by far those most impacted by the 
implementation of the biodiversity friendly management. 

The results for the two spider indicators in the five CSAs are shown in Figure 68. In the case 
of the SpA indicator, the changes due to the intervention were negative in almost all CSAs, 
with similar values in the two years, except for the increases in Guadalquivida in 2023, and in 
Zuid Limburg in 2022 and in 2023. The relative decreases were stronger in Solothurn.  

 
Figure 68: Average values in SpA and SpR indicators in the five EBAs in 2022 and 2023 and 
yearly relative differences (RI)   due to the biodiversity management intervention  

Differently from SpA, the relative changes in SpR due to the intervention were positive in all 
CSAs but Kiskunság, with very similar values in the two years. The highest relative increases 
were observed in the Swiss and in the Dutch CSAs.  
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Figure 69: Average values in PlaR and BioDiv indicators in the five EBAs in 2022 and 2023 and 
yearly relative differences (RI)  due to the biodiversity management intervention  

 

The increase in vascular plant richness following the intervention is rather consistent in the 
two years; the highest increase was estimated for the Hungarian CSA and the lowest for the 
Dutch one (Figure 69). In the permanent orchards of the Portuguese and Spanish CSAs the 
values of the indicator for the control scenario in 2023 had average values higher than the 
intervention values in 2022, similarly to what was observed for the WBA indicator in the two 
sites. 

The composite indicator BioDiv provides a synthesis of the overall effect of the intervention on 
all the considered biodiversity indicators, expressing the overall gain in biodiversity deriving 
from the adoption of management practices which promote farmland biodiversity. This was 
higher in areas with lower indicator scores for the control scenarios such as Kiskunság in 
Hungary and Guadalquivida in Spain with relative increase between 33 and 37%, while it was 
lower where the control indicators have high scores, as in Zuid Limburg characterized by a 
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relative increase of ca. 10% in both years. This could be due to the farms in the Dutch EBA 
being organic and the ones in the Spanish EBA being extremely intensive 

A synthetic representation of the overall biodiversity status in each CSA is shown by the 
stacked columns chart depicted in Figure 70, where each bar presents the contribution of each 
indicator to the overall biodiversity status in the two years of observations in the five EBAs 
under the two scenarios (i.e., control and intervention). 

  

Figure 70: Overall biodiversity status in each CSA as contributed by the six biodiversity 
indicators under the two management scenarios (control and intervention) in 2022 and 2023 

 

5.2. Biodiversity indicators: comparing data driven predictive models 
 

The identification of the best approach to model the spatiotemporal variability of the 
biodiversity indicators based on EBAs data was based on the comparison of error and 
agreement indices for the predictions of a machine learning approach and of a more classical 
regression-based approach. As discussed in the second chapter of the report, RF and 
stepwise MLR were tested in all CSAs and on all indicators, and MLR systematically 
outperformed RF in terms of reduced calibration errors and increased agreement between 
observed and predicted values. Although there is a vast amount of literature reporting the 
superiority of machine learning algorithms and in particular RF over MLR, there are several 
cases that report the opposite. There are indeed specific scenarios where RF underperforms 
compared to MLR: 

1. Limited Data Availability: in scenarios where there is limited data availability, MLR may 
outperform RF due to its ability to handle small datasets effectively (Adewale et al., 2024; Maia 
et al., 2021).  When the number of features is extremely large compared to the number of 
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samples and the percentage of truly informative features is very small, the performance of 
traditional RF declines significantly (Gosh and Cabrera, 2022). 

2. Linear Relationships: when the relationships between predictors and the target variable are 
predominantly linear, MLR may outperform RF, as it is well suited for capturing linear 
relationships (Zanella et al., 2017; Jenkins et al., 2018). 

3. Interpretability: in cases where interpretability is crucial, MLR may be preferred over RF, as 
it provides easily interpretable coefficients for each predictor (Borup et al., 2023). 

4. Overfitting Concerns: RF may underperform when there are concerns about overfitting, 
especially if the model is not validated on holdout data to ensure it is not over-fitted to the 
learning set (Adewale et al., 2024).  

5. Bounded Outcome Variables: for bounded outcome variables restricted to the unit interval, 
classical modeling approaches based on mean squared error loss, such as RF, may suffer 
due to not accounting for heteroscedasticity in the data (Maia et al., 2021). 

Data availability, strong linear relationships, and bounded outcome variables are all factors 
that might have played a role in the poor predictive performance of RF when applied to the 
SHOWCASE EBAs data. As for point 3, interpretability is indeed a desirable outcome provided 
by MLR as it might provide some insights useful to disentangle the complex relationships 
between anthropic pressures, landscape attributes, habitat features and biodiversity.   

 

5.3. Biodiversity indicators: assessing the impact of drivers 
 

The impact of environmental and anthropic drivers differed in the five EBAs considered in 
this report, but the identification of a subset of predictors resulting in the best performing 
models allows the assessment of which are variables are the most frequently chosen in the 
twenty MLR models that were calibrated.  

The predictors describing landscape features, i.e. the distance from the road network and 
from small woody features, were selected in 70 and 60% of the MLR models, respectively, 
being statistically significant in 86 and 42% of the cases, respectively, where they were used 
as predictors. In all cases, pollinators and plant indicators increased closer to SWF and along 
field margins, and in particular wild bees’ and plants’ species richness declined with distance 
from field margins, confirming that diverse and structured agricultural landscapes with small 
cultivation units would favour farmland biodiversity. Based on the value of the standardised 
regression coefficients, though, the explanatory power of these predictors on average 
accounted for 4 to 13% of the observed variability, with a minimum in the case of the spider 
indicators (ca. 2%) and a maximum for plant species richness indicator (30%). 

The effects of terrain attributes as drivers of biodiversity indicators were strongly linked to 
the geomorphological settings of each CSA. Among the terrain attributes, aspect, catchment 
slope and topographic wetness index were all considered in 40% of the regression models, 
being statistically significant in 88, 63, and 50% of the models, respectively, where they are 
used as predictors. As for aspects, significant responses of different signs were observed for 
pollinators in the Spanish and Portuguese EBAs as compared to the Swiss one: lower values 
for pollinators abundance in the SE-S-SW facing slopes in Guadalquivida and Alentejo, and 
higher values of both abundance and species richness in the SE-S-SW facing slopes  in 
Solothurn. Such contrasting responses are likely to be due to the very different climatic 
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conditions which characterised the two years of observations, with a strong and prolonged 
drought in the Iberian Peninsula. The topographic wetness index was significantly and  
positively correlated with the three species’ richness indicators, while catchment slope had a 
different impact on the different indicators: positive on pollinators’ and plants’ ones, and 
negative on spiders’ ones. Considering the value of the standardised regression coefficients, 
the explanatory power of the above mentioned three terrain attributes on average accounted 
for a share of  the observed variability between 4 and 29% , with an average of  10% for aspect 
and TWI and 14% for catchment slope. 

Among the remote sensing indices derived from Sentinel-2 data via GEE, 65% of the models 
included the soil index SOSI2 (Douaoui and Lepinard, 2010, Yahiaoui et al., 2015) as 
predictor, 55% selected the reflectance in the IRn band (Sentinel-2 B8)  and 50% the 
vegetation index NDVI (Rouse et al., 1974), highlighting the role played by bare soil conditions, 
soil moisture and vegetation cover status on the selected biodiversity indicators. Furthermore, 
ten additional indices among those listed in Table 2 were selected as predictors by the 
stepwise procedure. This confirms, as already observed by Torresani et al. (2023) in 
SHOWCASE D1.4, the relevance of vegetation and soil indices from  Sentinel-2 data in 
describing the conditions that shape pollinator and predator communities at the regional scale. 
Additional value of RSI as predictors lies in their availability along the time continuum, which 
provides time variant predictors that can successfully catch and predict seasonal and yearly 
changes in the status of soil and vegetation affecting biodiversity and ecological processes. 
The results presented in this report refer to the two sampling seasons of 2022 and 2023, using 
RSI for the same seasons and years as predictors, but it would be possible to apply the models 
to back-cast and forecast in different seasons and years even in absence of additional ground 
data. Additionally, it would be possible to include additional data from new field surveys in the 
EBAs to the current datasets to improve the existing models.  

 

Figure 71: Average values of the standardized MLR correlation coefficients normalized scores 
(0-1) for the biodiversity indicators predictors for the five EBAs in 2022 and 2023. 
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To visualize the relevance of the different drivers, Figure 71 depicts the average values of the 
standardized MLR correlation coefficients normalized scores for the biodiversity indicators 
predictors over the five EBAs in 2022 and 2023. On a normalized 0 to 1 scale, considering all 
the five biodiversity indicators and the occurrence of each predictor in all the MLR models 
calibrated for the five EBAs, the average scores for the four groups of biodiversity drivers (cf. 
Table 2) would be equal to 0.26 for the biodiversity management, 0.15 for the landscape 
features, 0.31 for the terrain attributes and 0.40 for the remote sensing indicators (soil and 
vegetation health and moisture conditions). Seasonal and interannual variability scored 0.44 
and 0.27, respectively. A synthetic representation of the overall contribution of each predictor 
to each biodiversity indicators  in the five EBAs is shown by the stacked columns chart 
depicted in Figure 72, where each bar presents the contribution of each predictor to the 
estimation of each single indicator in all EBAs in the two years of observations. 

 

Figure 72: Overall average contributions in all EBAs of MLR predictors to each biodiversity 
indicator expressed in terms of MLR standardized correlations scores. 

When considering separately the different biodiversity indicators surveyed in the five EBAs, 
the relevance of the different groups of predictors highlights very clearly that the impacts of 
the considered drivers changes noticeably, as can be seen in figure 73 which illustrates such 
differences  in terms of normalised scores of the standardised MLR coefficients for bees, 
spiders and vascular plants indicators. 
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Figure 73. Pie charts showing EBAs averaged contribution of MLR predictors to wild bees (top 
right), spiders (bottom left) and vascular plants (bottom right) indicators expressed in terms of 
MLR standardized correlations scores. The overall scores are also shows (top right) 

 

The highest overall score is observed for Soil and Vegetation Conditions (0.45) as assessed 
by the RSIs, indicating that these factors strongly influence all three biodiversity groups 
collectively. On the other side, the lowest overall score is associated to Landscape Features 
(0.14), suggesting that this factor has the minor influence across the three groups in the five 
EBAs. The bees indicators exhibit the strongest impact due to seasonality (0.58) and to Soil 
and Vegetation Conditions (0.56), indicating that these factors are particularly important for 
bee biodiversity. The lowest score for bees is with Landscape Features (0.16), suggesting that 
distance from roads and green infrastructures  have a minor impact on bee populations. 
Spiders’ indicators showed the strongest impact due to Seasonality (0.41) and Soil and 
Vegetation Conditions (0.42), similarly to bees, but the score values are slightly lower. The 
weakest impact on spiders indicators is that of biodiversity management treatment (0.07), 
which is notably low, indicating that flower strips have almost no influence on spider 
biodiversity indicator. Vascular plants showed the strongest scores for Terrain Attributes (0.47) 
and Soil and Vegetation Conditions (0.43), suggesting that these factors are critical for plant 
species richness. The lowest score for plants is for  Seasonality (0.12), indicating that seasonal 
variability had little impact on plant biodiversity, as contrasted by yearly variation that resulted 
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to play a much significant role. Soil and Vegetation Conditions consistently showed high 
scores across all groups (bees: 0.56, spiders: 0.42, plants: 0.43), making them the most 
influential factors for biodiversity overall. Seasonality is highly important for bees (0.58) and 
moderately important for spiders (0.41), but it has little effect on plants species diversity (0.12). 
Biodiversity management interventions  are most relevant for bees (0.54) but have almost no 
impact on spiders (0.07) and only a moderate effect on vascular plants species richness 
(0.17). Terrain Attributes are particularly important for vascular plants diversity (0.47) and 
spiders (0.37), but less so for bees (0.20). Landscape Features have the lowest influence 
across all groups, with the highest correlation being only 0.18 (vascular plants species 
richness).  

 

5.4. Biodiversity indicators: comparing modelling approaches for pollinators 
 

The comparison between the predictions of the data driven model and those resulting from 
the application of the parametric model of Lonsdorf et al. (2009), as implemented in Zulian et 
al. (2013),  has highlighted the role played by the several assumptions underlying the model. 
The parametric models offer spatially explicit predictions, but the resulting patterns depend on 
the thematic and spatial resolution of the drivers considered, in this case the land use/land 
cover class (thematic and spatial resolution) and the climatic data (spatial resolution). Both 
can be improved in terms of resolution, and finer-scale input raster can be used as in Häussler 
et al. (2017), but still they would only provide an average static assessment over the land use 
classes of a given site and for the reference time frame defined by the climatic variables.  In 
their recent review on pollination supply models, A. Giménez-García et al. (2023) have 
proposed possible alternatives to overcome such limitations depending on local data and 
expert knowledge availability, which would allow the creation of locally specific tables to apply 
to the framework of the Lonsdorf modelling approach. If this is not possible, mechanistic 
models are better tailored to provide useful information over large regions rather than at local 
scales (Image et al., 2022). The outcomes of the two approaches can be compared, as shown 
in this report, in terms of average scores and value patterns and trends over a given area but 
comparing their performances in statistical terms is not feasible as the MLR models are 
expressions of the calibration data used to train them, and therefore the estimated values 
necessarily better replicate the observed ones when compared with the mechanistic model. 

 

5.5. Biodiversity indicators as proxies for ecosystem services provision 
 

Using the five biodiversity indicators as proxies for ecosystem services in the five EBAs, two 
regulating and one supporting service were assessed accordingly, namely pollination, pest 
control and habitat provision.  Pollination and pest control regulating services were derived 
from the combination of the abundance and species richness indicators for wild bees and 
spiders respectively, resulting in additional 80 spatiotemporal mapping outputs.  Habitat 
provision for biodiversity on the other side relied on vascular plants species richness as a 
proxy; in doing so no new spatiotemporal maps were estimated as these are coincident with 
those of the single indicator produced for the two rounds of the two years of observations in 
each EBA. The spatiotemporal maps of the pollination and pest control ecosystem services 
are presented in Appendix A along with the raster statistics for each CSA. The spatially 
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averaged ecosystem services indicators values, as derived from postprocessing the raster 
maps, and their relative changes are summarized  in Table 60 for the two rounds of sampling 
in the two years of EBAs survey; the box and whiskers plot in Figure 74 shows the average 
ecosystem services scores by case study area and treatment. 

 

Table 60: Average ecosystem services  indicators in the five EBAs in the two sampling rounds 
of 2022 and 2023 and relative differences due to the implementation of biodiversity management.  

Ecosystem Service Country Round 2022_C 2022_I 2023_C 2023_I REL_I 2022 REL_I 2023 

Pollination HU 1 0.128 0.241 0.136 0.261 88.2% 92.0% 

  HU 2 0.231 0.350 0.281 0.392 51.7% 39.5% 

  ES 1 0.304 0.533 0.388 0.594 75.0% 53.0% 

  ES 2 0.107 0.345 0.180 0.396 221.4% 119.3% 

  PT 1 0.232 0.481 0.264 0.501 107.1% 89.4% 

  PT 2 0.029 0.191 0.288 0.498 554.9% 73.1% 

  NL 1 0.141 0.373 0.232 0.403 163.6% 73.7% 

  NL 2 0.406 0.451 0.402 0.444 10.9% 10.5% 

  CH 1 0.117 0.246 0.153 0.261 109.5% 70.6% 

  CH 2 0.112 0.229 0.141 0.274 104.2% 94.0% 

Pest Control HU 1 0.214 0.176 0.155 0.130 -17.8% -15.9% 

  HU 2 0.548 0.521 0.407 0.377 -5.0% -7.3% 

  ES 1 0.253 0.249 0.316 0.319 -1.7% 1.0% 

  ES 2 0.168 0.165 0.173 0.183 -1.8% 5.8% 

  PT 1 0.283 0.279 0.317 0.313 -1.4% -1.1% 

  PT 2 0.172 0.172 0.192 0.190 0.4% -1.5% 

  NL 1 0.267 0.312 0.246 0.288 17.0% 17.2% 

  NL 2 0.383 0.415 0.391 0.424 8.4% 8.4% 

  CH 1 0.255 0.276 0.280 0.300 8.2% 7.1% 

  CH 2 0.260 0.281 0.273 0.295 7.9% 7.9% 

Habitat provision HU 1 0.164 0.359 0.155 0.363 119.0% 133.6% 

  HU 2 0.270 0.481 0.245 0.460 77.8% 88.0% 

  ES 1 0.300 0.393 0.546 0.639 31.0% 17.0% 

  ES 2 0.333 0.426 0.562 0.655 28.0% 16.6% 

  PT 1 0.540 0.633 0.763 0.853 17.2% 11.8% 

  PT 2 0.544 0.637 0.775 0.863 17.1% 11.4% 

  NL 1 0.538 0.580 0.553 0.595 7.8% 7.6% 

  NL 2 0.555 0.598 0.529 0.572 7.7% 8.1% 

  CH 1 0.330 0.528 0.323 0.520 60.0% 61.0% 

  CH 2 0.555 0.746 0.564 0.753 34.4% 33.5% 

 

Generally intervention maps show higher average scores for Pollination (+110% on average) 
and Habitat (+41% on average) compared to control across all countries and years. This would 
suggest that the interventions have the potential to effectively enhance these ecosystem 
services at landscape scale. Pest Control scores, though, show less consistent improvement 
(less than 2% on average) with interventions and, in some cases, the control scenario perform 
similarly, as in the Spanish and Portuguese CSAs, or slightly better, as in the Hungarian CSA. 



118 | Page  D2.7: Multiscale spatiotemporal modelling of biodiversity indicators 
_________________________________________________________________________ 

 

In terms of yearly variability, in both scenarios indicator scores for Pollination and Habitat 
generally increase from 2022 to 2023 in 90% and 75% of the cases respectively, suggesting 
a possible  cumulative positive effect of the interventions over time and/or more favourable 
climatic conditions. Increases in Pest Control are observed in the Portuguese, Spanish and 
Swiss CSAs, where for both scenarios average indicator scores were higher in 2023 with 
respect to 2022. 

 

Figure 74. Average ecosystem services scores by CSA and treatment.  

 

As for seasonality, in the Dutch and Hungarian CSAs there is a general increase from round 
1 to round 2 for all indicators, while in the Portugues and Spanish ones Pollination and Pest 
Control decrease significantly from round 1 to round 2, while Habitat provision increases. 
Similarly in the Swiss CSA Habitat provision increased significantly from round 1 to round 2. 

The round averaged indicator scores of the three ecosystem services and the relative 
differences of the indicator scores under the two biodiversity management scenarios in the 
five CSAs considered for the analysis are summarized in Figure 75. 

In the Hungarian CSA, the pollination regulating service  (HU) scores significantly higher for 
the intervention scenario across both years and rounds. For example, in 2022 Round 2, 
intervention scores (0.350) are significantly higher (+52%)  than control scores (0.231). On the 
other hand, the Pest Control regulating service often score higher in the control than in the 
intervention scenario (e.g., 2022 Round 1: Control 0.214 vs. Intervention 0.176), suggesting 
that flower strips may not have the potential to significantly enhance pest control in this region. 
Intervention show a strong positive impact on Habitat provision, with scores more than 
doubling (+134%) in some cases (e.g., 2022 Round 1: Control 0.164 vs. Intervention 0.359). 
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In the Spanish and Portugues CSAs the average trends in potential ecosystem service 
supply resulting from the upscaling process are very similar for the three considered 
ecosystem services. Spain (ES). Under the intervention scenarios, Pollination service 
significantly results in higher potential scores, especially in round 2 of 2022, with relative 
increases of 221 (Control 0.107 vs. Intervention 0.345) and 555% (Control 0.03 vs. 
Intervention 0.191) in Guadalquivida and Alentejo respectively. In both CSAs, average the 
scores for Pest Control are nearly identical between control and intervention plots, indicating 
minimal impact from the interventions. In the Spanish CSA, the increase in Habitat Provision 
linked to the intervention is about 10% higher than that observed in the Portuguese CSA ( 
23% vs. 14% over two rounds of the two years); in both cases though the relative increase 
due to the intervention is more evident in the first year, with very similar values for both rounds.   

 

 

Figure 75. Average ecosystem services scores indicators in the five EBAs for the two scenarios 
in 2022 and 2023 and yearly relative differences (RI) due to the biodiversity management 
intervention (C: Control; I : Intervention) 

 

In the Dutch CSA the average gain in potential Pollination service supply over the two rounds 
of the years of observation was ca. 65%, with the largest relative  increase (+165%) in 2022 
Round 1 (Control 0.141 vs. Intervention 0.373). As for Pest Control, results for the intervention 
scenario slightly outperform control, but the differences are small (average relative increase 
ca 13%). Slightly lower and very similar over the two rounds of the two years of observations 
is the average relative increase observed under the intervention scenarios for the  Habitat 
Provisioning service, ranging from 7 to 8%.  

In the Swiss CSA Pollination services show consistent improvements under the intervention 
scenario, with the largest relative increase over the control scenario (+110%) in 2022 round 1 
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(Control 0.117 vs. Intervention 0.246). Average scores for the Pest Control regulating service 
are similar between control and intervention scenario, with minor improvements in the latter 
(ca 8%). As for the Habitat provisioning service, the interventions scenario has a strong 
positive impact, with the largest relative increase (+61%) observed  in 2023 Round 1 (Control 
0.32 vs. Intervention 0.52). 

 

6 Conclusions and outlook 
 

The outcomes of the spatiotemporal modelling of the biodiversity indicators collected in the 
five EBAs considered by T2.7 allowed for assessing the potential gains in biodiversity 
stemming from the implementation of biodiversity management practices at field level and to 
upscale them at landscape level under different environmental and farming conditions. It was 
made evident that the five biodiversity indicators respond differently to the implementation of 
the interventions: results highlighted that the biodiversity management interventions are highly 
effective at promoting wild bees abundance and diversity, and vascular plant species diversity, 
enhancing then  pollination regulating services and habitat provision service, but they have in 
all cases limited impact on spiders communities, and then on pest control regulating service. 

As expected, the impact of interventions varies by CSA, very likely due to co-occurring 
differences in environmental conditions, crop types, management practices, and local 
biodiversity. The most profound impacts are observed in the most intensive agricultural 
systems, i.e., the intensive orchards of stone fruits in Andalucia and of olive trees in Alentejo, 
while the occurrence of organic farms and of more extensive agricultural farming systems 
result in moderate improvement of biodiversity indicators and related ecosystem services, as 
in the Dutch and the Hungarian CSAs.  

Results highlighted also a marked seasonality effect on biodiversity indicators and on the 
related ecosystem services, with opposite trends depending on the regional climate patterns: 
in the EBAs of central continental Europe, biodiversity indicators and ecosystem services 
scores increase in late spring (round 2), while the opposite is observed in the EBAs of the 
southern Iberian Peninsula, where  biodiversity scores and ecosystem services were always 
higher in early spring (round 1), highlighting the importance of timing for monitoring and 
intervention effectiveness. Furthermore the severe drought conditions observed in 2022 were 
coupled with a greater impact of the intervention with respect to the control compared to 2023, 
suggesting that such interventions could also play a role in mitigating the stress induced by 
the increased occurrence of extreme events which is a distinctive feature of the current climate 
crisis.  

The predictive models presented in this report are entirely data-driven and, as such, they are 
assumptions-free, differently from mechanist models.  As the data collected at field level in the 
field EBAs were processed separately for each EBA, the calibrated models stemming from 
such data are necessarily local specific.  The estimated biodiversity increase depends then 
entirely on the observed data at local field scale and on the strength of their relationships with 
the set of predictor covariates used for the upscaling at landscape scale. The robustness of 
the models and the reliability of the estimates are moderate to good, depending on the 
accuracy of the spatial regression calibrated on available observations on the different EBAs.  
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As for the possible applications of the predictive models, each of them was calibrated on a set 
of local observations and predictors and, as such, should be used locally at field and/or at 
landscape scale to assess the potential gains or loss in term of biodiversity indicators under a 
business as usual scenario or under a scenario which foresees the implementation of 
biodiversity-friendly management options such as those implemented in the SHOWCASE 
EBAs. The approach has the potential to provide predictions for specific reference periods, 
either in the future and in the past, given the availability of time variant predictors from remote 
sensing. Furthermore, the mapping outputs have the potential to improve the implementation 
of biodiversity management strategies through enhanced spatial targeting, as they provide 
spatially explicit information about the location of hot and cold spots for biodiversity across a 
region.  

The methodological approach though can be tailored to any case study area and to any scale 
provided adequate input data (observed biodiversity indicators) and predictors (spatial 
covariates) are available.  As such,  the approach could be implemented across EU, but if the 
goal would be to provide estimates at continental scale the calibration data set should be 
representative of the variability encountered at field scale over the agricultural lands across 
the whole EU, which is not the case for the SHOWCASE EBAs. Another data limitation for 
modelling applications stems from the fact that in the SHOWCASE EBAs only two scenarios 
were confronted, i.e. the control (or business as usual) and the intervention, making it not 
possible to detect non-linear behaviour or saturation effects in response to the treatment 
neither at field nor at landscape scale.  

The results of Task 2.7 illustrated in this Deliverable can be linked to T2.3 to provide additional 
arguments to raise and reinforce biodiversity awareness among different types of farmers that 
are adopting biodiversity-enhancing management practices. In this respect T2.7 outcomes 
can elucidate biodiversity patterns beyond the farm level in a broader context at a landscape 
or regional level, besides providing insights into the potential biodiversity gain resulting from 
biodiversity-enhancing management practices in the specific context of each CSA. 

Likewise, T2.7 outcomes are currently contributing to the integration of the spatial modelling 
with the economic analysis of Task 2.8 to elucidate the impact and the interconnection of 
incentive design on biodiversity management efficiency at landscape scale. More in detail, the 
cost analysis integration with the biodiversity drivers and gains at landscape scale is being 
carried out in the intensive stone-fruit orchards of the Guadalquivir River Valley, Andalucía, 
Spain. Building upon T2.7 outcomes for the Spanish CSA, the joint approach developed with 
T2.8 aims to the integration of an economic analysis, incorporating a cost-opportunity 
estimation framework to assess how different incentive structures influence farmer 
participation and conservation effectiveness. The allocation of the biodiversity management 
intervention changes when economic feasibility is introduced, as cost-related constraints 
impact where farmers are likely to adopt biodiversity-friendly practices. Farm management 
data, including production and additional costs, have been upscaled to the landscape scale  
highlighting their relationships with biodiversity indicators for pollinators and vascular plants. 
Preliminary findings indicate that the additional costs of implementing flower strips far exceed 
the payments provided under current flat-rate AES, making such interventions economically 
unfeasible under existing subsidy structures. 

Finally, the outcomes of Task 2.7 can also contribute to elucidating spatial biodiversity patterns 
and temporal dynamics at the level of individual EBAs in the framework of the ongoing 
discussions with each multi-actor community and serve as a basis for further improvements 
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of the biodiversity innovations as foreseen in Task 3.2, as well as effectively contribute to 
providing communication and policy recommendation material for WP4.  
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Appendix. A  Spatiotemporal maps of regulating ecosystem services 
in the five CSAs 
 

A.1. Hungarian Case Study Area 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (top row) and round 2 
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

Table 1.A: Pollination indicator raster statistics and relative changes with respect to the baseline 
and to the control of each round. 

 

 

 

Indicator year r treat Poll mean  median  stdev  min  max Rel change baseline Rel Change T
Pollination  2022 r1 control 0.128 0.094 0.133 0.000 1.000 -
Pollination  2022 r1 intervention 0.241 0.248 0.160 0.000 1.000 0.88 0.88
Pollination  2022 r2 control 0.231 0.215 0.168 0.000 1.000 0.80
Pollination  2022 r2 intervention 0.350 0.349 0.157 0.000 1.000 1.73 0.52
Pollination  2023 r1 control 0.136 0.091 0.140 0.000 1.000 0.06
Pollination  2023 r1 intervention 0.261 0.255 0.154 0.000 1.000 1.04 0.92
Pollination  2023 r2 control 0.281 0.293 0.173 0.000 1.000 1.19
Pollination  2023 r2 intervention 0.392 0.417 0.166 0.000 1.000 2.06 0.40

Average changes 1.11 0.68



134 | Page  D2.7: Multiscale spatiotemporal modelling of biodiversity indicators 
_________________________________________________________________________ 

 

 

 

Figure 2.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (top row) and round 2 
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

 

 

Table 2.A: Pest Control indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

 

 

Indicator year r treat Pest Ctrl mean  median  stdev  min  max Rel change baseline Rel Change T
Pest Control 2022 r1 control 0.214 0.200 0.121 0.000 1.000 -
Pest Control 2022 r1 intervention 0.176 0.159 0.112 0.000 1.000 -0.18 -0.18
Pest Control 2022 r2 control 0.548 0.531 0.175 0.000 1.000 1.56
Pest Control 2022 r2 intervention 0.521 0.499 0.184 0.000 1.000 1.44 -0.05
Pest Control 2023 r1 control 0.155 0.140 0.089 0.000 1.000 -0.28
Pest Control 2023 r1 intervention 0.130 0.116 0.078 0.000 1.000 -0.39 -0.16
Pest Control 2023 r2 control 0.407 0.386 0.159 0.000 1.000 0.90
Pest Control 2023 r2 intervention 0.377 0.354 0.164 0.000 1.000 0.76 -0.07

Average changes 0.55 -0.12
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Table 3.A: Habitat Provision indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

Table 4.A: Summary raster statistics and relative changes in estimated ES scores due to 
intervention with respect to the control in the two years of observations in the Hungarian CSA. 

 

 

 

Indicator year r treat Habitat mean  median  stdev  min  max Rel change baseline Rel Change T
 Habitat 2022 r1 control 0.164 0.145 0.154 0.000 1.000 -
 Habitat 2022 r1 intervention 0.359 0.373 0.197 0.000 1.000 1.19 1.19
 Habitat 2022 r2 control 0.270 0.227 0.223 0.000 1.000 0.65
 Habitat 2022 r2 intervention 0.481 0.455 0.210 0.000 1.000 1.93 0.78
 Habitat 2023 r1 control 0.155 0.143 0.127 0.000 1.000 -0.05
 Habitat 2023 r1 intervention 0.363 0.371 0.160 0.000 1.000 1.21 1.34
 Habitat 2023 r2 control 0.245 0.249 0.159 0.000 1.000 0.49
 Habitat 2023 r2 intervention 0.460 0.477 0.178 0.000 1.000 1.81 0.88

Average changes 1.03 1.05

Average Poll mean  median  stdev  min  max Avg. Rel Incr.
C2022 0.179 0.158 0.127 0.000 1.000
C2023 0.208 0.198 0.137 0.000 1.000
C 0.194 0.178 0.116 0.000 1.000

I2022 0.296 0.295 0.135 0.000 1.000 0.648
I2023 0.326 0.333 0.142 0.000 1.000 0.567
I 0.311 0.309 0.123 0.000 1.000 0.605

Average Pest Ctrl mean  median  stdev  min  max Avg. Rel Incr.
C2022 0.381 0.381 0.118 0.000 1.000
C2023 0.281 0.269 0.104 0.000 1.000
C 0.331 0.330 0.098 0.000 1.000

I2022 0.348 0.344 0.118 0.000 1.000 -0.086
I2023 0.254 0.241 0.102 0.000 1.000 -0.097
I 0.301 0.299 0.096 0.000 1.000 -0.090

Average Habitat mean  median  stdev  min  max Avg. Rel Incr.
C2022 0.217 0.192 0.152 0.000 1.000
C2023 0.200 0.186 0.118 0.000 1.000
C 0.209 0.197 0.113 0.000 1.000

I2022 0.420 0.417 0.168 0.000 1.000 0.934
I2023 0.412 0.413 0.142 0.000 1.000 1.057
I 0.416 0.416 0.132 0.000 1.000 0.993
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A.2. Spanish Case Study Area 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (1st and 3rd row) and 
round 2 (2nd and 4th row) for 2022 (1st and 2nd row) and 2023 (3rd and 4th row); C: Control, I: 
Intervention. 

 

Table 5.A: Pollination indicator raster statistics and relative changes with respect to the baseline 
and to the control of each round. 

 

Indicator year r treat Poll mean  median  stdev  min  max Rel change baseline Rel Change T
Pollination  2022 r1 control 0.304 0.303 0.133 0.000 1.000 -
Pollination  2022 r1 intervention 0.533 0.539 0.126 0.000 1.000 0.75 0.75
Pollination  2022 r2 control 0.107 0.091 0.099 0.000 1.000 -0.65
Pollination  2022 r2 intervention 0.345 0.347 0.114 0.000 1.000 0.13 2.21
Pollination  2023 r1 control 0.388 0.390 0.117 0.000 1.000 0.28
Pollination  2023 r1 intervention 0.594 0.598 0.106 0.000 1.000 0.95 0.53
Pollination  2023 r2 control 0.180 0.169 0.097 0.000 1.000 -0.41
Pollination  2023 r2 intervention 0.396 0.395 0.108 0.000 1.000 0.30 1.19

Average changes 0.19 1.17
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Figure 4.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (1st and 3rd row) and 
round 2 (2nd and 4th row) for 2022 (1st and 2nd row) and 2023 (3rd and 4th row); C: Control, I: 
Intervention. 

 

Table 6.A: Pest Control indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

Indicator year r treat Pest Ctrl mean  median  stdev  min  max Rel change baseline Rel Change T
Pest Control 2022 r1 control 0.253 0.244 0.144 0.000 1.000 -
Pest Control 2022 r1 intervention 0.249 0.238 0.141 0.000 1.000 -0.02 -0.02
Pest Control 2022 r2 control 0.168 0.151 0.126 0.000 1.000 -0.34
Pest Control 2022 r2 intervention 0.165 0.146 0.123 0.000 1.000 -0.35 -0.02
Pest Control 2023 r1 control 0.316 0.313 0.138 0.000 1.000 0.25
Pest Control 2023 r1 intervention 0.319 0.317 0.139 0.000 1.000 0.26 0.01
Pest Control 2023 r2 control 0.173 0.163 0.126 0.000 1.000 -0.32
Pest Control 2023 r2 intervention 0.183 0.174 0.127 0.000 1.000 -0.28 0.06

Average changes -0.11 0.01
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Table 7.A: Habitat provision indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

Table 8.A: Summary raster statistics and relative changes in estimated ES scores due to 
intervention with respect to the control in the two years of observations in the Spanish CSA. 

 

 

 

Indicator year r treat Habitat mean  median  stdev  min  max Rel change baseline Rel Change T
 Habitat 2022 r1 control 0.300 0.284 0.068 0.000 0.837 -
 Habitat 2022 r1 intervention 0.393 0.377 0.068 0.012 0.930 0.31 0.31
 Habitat 2022 r2 control 0.333 0.317 0.068 0.000 0.866 0.11
 Habitat 2022 r2 intervention 0.426 0.410 0.068 0.006 0.959 0.42 0.28
 Habitat 2023 r1 control 0.546 0.531 0.069 0.000 1.000 0.82
 Habitat 2023 r1 intervention 0.639 0.624 0.069 0.081 1.000 1.13 0.17
 Habitat 2023 r2 control 0.562 0.547 0.068 0.038 1.000 0.87
 Habitat 2023 r2 intervention 0.655 0.640 0.068 0.132 1.000 1.18 0.17

Average changes 0.69 0.23
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A.3. Portuguese Case Study Area 
 

 

Figure 5.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (top row) and round 2 
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

Table 9.A: Pollination indicator raster statistics and relative changes with respect to the baseline 
and to the control of each round. 

 

 

 

 

Indicator year r treat Poll mean  median  stdev  min  max Rel change baseline Rel Change T
Pollination  2022 r1 control 0.232 0.216 0.159 0.000 1.000 -
Pollination  2022 r1 intervention 0.481 0.479 0.158 0.000 1.000 1.07 1.07
Pollination  2022 r2 control 0.029 0.000 0.070 0.000 1.000 -0.87
Pollination  2022 r2 intervention 0.191 0.171 0.147 0.000 1.000 -0.18 5.55
Pollination  2023 r1 control 0.264 0.248 0.150 0.000 1.000 0.14
Pollination  2023 r1 intervention 0.501 0.496 0.150 0.000 1.000 1.15 0.89
Pollination  2023 r2 control 0.288 0.267 0.181 0.000 1.000 0.24
Pollination  2023 r2 intervention 0.498 0.498 0.181 0.000 1.000 1.14 0.73

Average changes 0.38 2.06
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Figure 6.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (top row) and round 2 
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention. 

 

Table 10.A: Pest Control indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

 

 

 

Indicator year r treat Pest Ctrl mean  median  stdev  min  max Rel change baseline Rel Change T
Pest Control 2022 r1 control 0.283 0.285 0.132 0.000 1.000 -
Pest Control 2022 r1 intervention 0.279 0.279 0.130 0.000 1.000 -0.01 -0.01
Pest Control 2022 r2 control 0.172 0.161 0.113 0.000 1.000 -0.39
Pest Control 2022 r2 intervention 0.172 0.160 0.111 0.000 1.000 -0.39 0.00
Pest Control 2023 r1 control 0.317 0.320 0.133 0.000 1.000 0.12
Pest Control 2023 r1 intervention 0.313 0.316 0.132 0.000 1.000 0.11 -0.01
Pest Control 2023 r2 control 0.192 0.188 0.122 0.000 1.000 -0.32
Pest Control 2023 r2 intervention 0.190 0.185 0.121 0.000 1.000 -0.33 -0.01

Average changes -0.17 -0.01
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Table 11.A: Habitat Provision indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

Table 12.A: Summary raster statistics and relative changes in estimated ES scores due to 
intervention with respect to the control in the two years of observations in the Portuguese CSA. 

 

 

 

Indicator year r treat Habitat mean  median  stdev  min  max Rel change baseline Rel Change T
 Habitat 2022 r1 control 0.540 0.533 0.109 0.040 1.000 -
 Habitat 2022 r1 intervention 0.633 0.626 0.109 0.133 1.000 0.17 0.17
 Habitat 2022 r2 control 0.544 0.537 0.110 0.023 1.000 0.01
 Habitat 2022 r2 intervention 0.637 0.630 0.110 0.116 1.000 0.18 0.17
 Habitat 2023 r1 control 0.763 0.757 0.105 0.247 1.000 0.41
 Habitat 2023 r1 intervention 0.853 0.850 0.100 0.340 1.000 0.58 0.12
 Habitat 2023 r2 control 0.775 0.768 0.107 0.257 1.000 0.44
 Habitat 2023 r2 intervention 0.863 0.861 0.100 0.350 1.000 0.60 0.11

Average changes 0.578 0.34 0.14
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A.5. Dutch Case Study Area 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 7.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (1st and 3rd row) and 
round 2 (2nd and 4th row) for 2022 (1st and 2nd row) and 2023 (3rd and 4th row); C: Control, I: 
Intervention. 

 

Table 13.A: Pollination indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

Indicator year r treat Poll mean  median  stdev  min  max Rel change baseline Rel Change T
Pollination  2022 r1 control 0.141 0.136 0.056 0.000 1.000 -
Pollination  2022 r1 intervention 0.373 0.370 0.066 0.000 1.000 1.64 1.64
Pollination  2022 r2 control 0.406 0.404 0.068 0.000 1.000 1.87
Pollination  2022 r2 intervention 0.451 0.448 0.075 0.000 1.000 2.19 0.11
Pollination  2023 r1 control 0.232 0.225 0.078 0.000 1.000 0.64
Pollination  2023 r1 intervention 0.403 0.397 0.073 0.000 1.000 1.85 0.74
Pollination  2023 r2 control 0.402 0.401 0.064 0.000 1.000 1.84
Pollination  2023 r2 intervention 0.444 0.443 0.071 0.000 1.000 2.14 0.10

Average changes 1.74 0.65
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Figure 8.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (1st and 3rd row) and 
round 2 (2nd and 4th row) for 2022 (1st and 2nd row) and 2023 (3rd and 4th row); C: Control, I: 
Intervention. 

 

Table 14.A: Pollination indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

Indicator year r treat Pest Ctrl mean  median  stdev  min  max Rel change baseline Rel Change T
Pest Control 2022 r1 control 0.267 0.229 0.189 0.000 1.000 -
Pest Control 2022 r1 intervention 0.312 0.280 0.182 0.000 1.000 0.17 0.17
Pest Control 2022 r2 control 0.383 0.374 0.179 0.000 1.000 0.43
Pest Control 2022 r2 intervention 0.415 0.408 0.172 0.000 1.000 0.55 0.08
Pest Control 2023 r1 control 0.246 0.206 0.178 0.000 1.000 -0.08
Pest Control 2023 r1 intervention 0.288 0.254 0.172 0.000 1.000 0.08 0.17
Pest Control 2023 r2 control 0.391 0.380 0.187 0.000 1.000 0.46
Pest Control 2023 r2 intervention 0.424 0.415 0.179 0.000 1.000 0.59 0.08

Average changes 0.32 0.13
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Table 15.A: Habitat Provision indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

Table 16.A: Summary raster statistics and relative changes in estimated ES scores due to 
intervention with respect to the control in the two years of observations in the Dutch CSA. 

 

 

 

Indicator year r treat Habitat mean  median  stdev  min  max Rel change baseline Rel Change T
 Habitat 2022 r1 control 0.538 0.536 0.254 0.000 1.000 -
 Habitat 2022 r1 intervention 0.580 0.582 0.250 0.000 1.000 0.08 0.08
 Habitat 2022 r2 control 0.555 0.541 0.236 0.000 1.000 0.03
 Habitat 2022 r2 intervention 0.598 0.586 0.231 0.000 1.000 0.11 0.08
 Habitat 2023 r1 control 0.553 0.548 0.256 0.000 1.000 0.03
 Habitat 2023 r1 intervention 0.595 0.594 0.251 0.000 1.000 0.11 0.08
 Habitat 2023 r2 control 0.529 0.519 0.244 0.000 1.000 -0.02
 Habitat 2023 r2 intervention 0.572 0.565 0.240 0.000 1.000 0.06 0.08

Average changes 0.06 0.08
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A.6. Swiss Case Study Area 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (1st and 3rd row) and 
round 2 (2nd and 4th row) for 2022 (1st and 2nd row) and 2023 (3rd and 4th row); C: Control, I: 
Intervention. 
 

Table 17.A: Pollination indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

Indicator year r treat Poll mean  median  stdev  min  max Rel change baseline Rel Change T
Pollination  2022 r1 control 0.117 0.100 0.104 0.000 1.000 -
Pollination  2022 r1 intervention 0.246 0.243 0.139 0.000 1.000 1.09 1.09
Pollination  2022 r2 control 0.112 0.059 0.136 0.000 1.000 -0.05
Pollination  2022 r2 intervention 0.229 0.218 0.161 0.000 1.000 0.95 1.04
Pollination  2023 r1 control 0.153 0.080 0.192 0.000 1.000 0.31
Pollination  2023 r1 intervention 0.261 0.215 0.232 0.000 1.000 1.23 0.71
Pollination  2023 r2 control 0.141 0.090 0.156 0.000 1.000 0.21
Pollination  2023 r2 intervention 0.274 0.265 0.175 0.000 1.000 1.34 0.94

Average changes 0.73 0.95
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Figure 10.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (1st and 3rd row) and 
round 2 (2nd and 4th row) for 2022 (1st and 2nd row) and 2023 (3rd and 4th row); C: Control, I: 
Intervention. 
 

Table 18.A: Pest Control indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

Indicator year r treat Pest Ctrl mean  median  stdev  min  max Rel change baseline Rel Change T
Pest Control 2022 r1 control 0.255 0.227 0.182 0.000 1.000 -
Pest Control 2022 r1 intervention 0.276 0.250 0.182 0.000 1.000 0.08 0.08
Pest Control 2022 r2 control 0.260 0.237 0.170 0.000 1.000 0.02
Pest Control 2022 r2 intervention 0.281 0.261 0.171 0.000 1.000 0.10 0.08
Pest Control 2023 r1 control 0.280 0.250 0.198 0.000 1.000 0.10
Pest Control 2023 r1 intervention 0.300 0.273 0.199 0.000 1.000 0.18 0.07
Pest Control 2023 r2 control 0.273 0.253 0.169 0.000 1.000 0.07
Pest Control 2023 r2 intervention 0.295 0.277 0.168 0.000 1.000 0.16 0.08

Average changes 0.10 0.08
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Table 19.A: Habitat Provision indicator raster statistics and relative changes with respect to the 
baseline and to the control of each round. 

 

 

 

Table 20.A: Summary raster statistics and relative changes in estimated ES scores due to 
intervention with respect to the control in the two years of observations in the Swiss CSA. 

 

Indicator year r treat Habitat mean  median  stdev  min  max Rel change baseline Rel Change T
 Habitat 2022 r1 control 0.330 0.256 0.298 0.000 1.000 -
 Habitat 2022 r1 intervention 0.528 0.491 0.271 0.000 1.000 0.60 0.60
 Habitat 2022 r2 control 0.555 0.523 0.266 0.000 1.000 0.68
 Habitat 2022 r2 intervention 0.746 0.757 0.216 0.000 1.000 1.26 0.34
 Habitat 2023 r1 control 0.323 0.246 0.300 0.000 1.000 -0.02
 Habitat 2023 r1 intervention 0.520 0.480 0.274 0.000 1.000 0.58 0.61
 Habitat 2023 r2 control 0.564 0.532 0.264 0.000 1.000 0.71
 Habitat 2023 r2 intervention 0.753 0.767 0.213 0.000 1.000 1.28 0.34

Average changes 0.73 0.47


