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Summary

The report presents the results of project Task 2.7 tackling the spatiotemporal modelling and
the upscaling from the field to the landscape scale of five SHOWCASE core biodiversity
indicators: wild bee abundance and species richness, spider abundance and species richness,
and vascular plant species richness. The indicators have been modelled in five case study
areas (CSAs) encompassing the SHOWCASE EBAs in Hungary (Kiskunsag), Spain
(Guadalquivida), Portugal (Alentejo), the Netherlands (Zuid Limburg) and Switzerland
(Solothurn).

After a brief introduction in Chapter 1 of the state of the art and the goals of Task 2.7, Chapter
2 of the Deliverable describes the methodology adopted to model the impacts of the
implementation of biodiversity friendly farm management, as implemented by project partners
in the SHOWCASE EBA fields. For all the EBAs with available data for the two years of
surveys, a set of common predictors were associated with field data, providing a harmonized
set of covariates to be used for the spatiotemporal modelling. The set of covariates
encompasses terrain attributes, landscape structure descriptors, indices from remote sensing
describing vegetation and soil status, and variables describing the implementation of the
biodiversity friendly management practices. All the predictor data used are extracted from free
data sources resorting as much as possible to EU official data sets. To fulfill the goal of
upscaling field results, two different data driven approaches were tested: machine learning
algorithms, in particular Random Forest (RF), and multiple linear regressions (MLR). Based
on a set of error indices, the most accurate model was selected for each indicator in each
CSA. The use of the measured and modelled biodiversity indicators as proxies of ecosystem
services provision in the five EBAs is also discussed. Data driven model results for pollinator
abundance were compared with the outcomes of the mechanistic model of Lonsdorf et al
(2009), and selected ecosystem services were identified based on biodiversity indicator data
as foreseen in the description of Task 2.7.

Chapter 3 of the Deliverable reports the results of the spatiotemporal modelling in each CSA
for the five selected indicators, expressed as 0-1 interval normalized scores. In all cases MLRs
outperformed RFs in terms of accuracy and agreement with observed data. A sixth composite
indicator was calculated by summing and normalizing the five considered indicators. Raster
maps at 10m resolution are presented for each indicator, for the two rounds of sampling of the
two years under two different management scenarios: control and intervention. A total of 240
indicator maps were produced and analyzed. These maps provide a spatially explicit and time
dynamic assessment of the potential impact of the implementation of biodiversity friendly
management practices at landscape scale.

Chapter 4 of the Deliverable focuses on the comparison of the mechanistic and data driven
model results for pollinator occurrence in the five selected EBAs, focusing on the impacts of
the different drivers in the two approaches and on the resulting spatial patterns.

Chapter 5 closes the Deliverable by first comparing the biodiversity indicators modelling
results across the five CSAs, as well as the related ecosystem services estimates and maps,
and then summarizing the key findings of Task 2.7, providing an outlook on their further use
for scientific analyses within SHOWCASE.
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1 Introduction

Within the overall objective of SHOWCASE, i.e. to make biodiversity an integral part of
European farming by identifying effective incentives to invest in biodiversity in diverse
socioecological contexts, Task 2.7 contributes to an improved understanding of the spatial
and temporal interrelations and mechanisms between the location and time of implementing
biodiversity management and its effects on biodiversity indicators based on spatially explicit
data. The underlying assumption is that the adoption of incentives that successfully modify
farm management and enhance biodiversity results in land use/land cover changes that
positively affect biodiversity indicators at different scales with an impact on the supply of
biodiversity-based ecosystem services. Task 2.7 aimed to calibrate spatially explicit predictive
models with classical statistical approaches (e.g. multiple linear regressions) and machine
learning techniques (e.g. random forests) for mapping biodiversity indicators under two
different management scenarios (i.e. implementation vs. control). To this goal, normalized
biodiversity indicators derived from the biodiversity data collected in a group of selected EBAs
under the two different management scenarios were used as inputs along with a uniform set
of environmental covariates over a given spatial domain.

These sets of predictors for each EBA were entirely derived from freely available web
resources and were integrated with Copernicus-Sentinel 2 remote sensing indices (RSI)
retrieved via Google Earth Engine (GEE). Remote sensing (RS) represents a precious source
of data which are spatially explicit, cost-effective, rapidly assessed, available for almost any
area around the globe, multi-temporal and at a spatial resolution which is feasible for most
ecosystem services (ES) assessment applications. The number of RS applications to ES
assessment and mapping has increased significantly in the last decade and has addressed
mostly provisioning services, such as timber and food production, and regulatory services,
including air quality, climate regulation, extreme events prevention and control, waste
treatment, erosion control, biodiversity, and soil fertility (Anayu et al., 2012). A systematic
review of literature on RS of ES is provided by de Araujo Barbosa et al. (2015) who concluded
that data and products provided by RS alone do not have the capabilities to effectively assess
and map the full range of ES, and therefore there is the need for an integrated approach
through the fusion of remotely sensed data with information from other sources (del Rio-Mena
et al., 2023; Awada et al., 2022; del Rio-Mena et al., 2020; Thomas et al., 2020; Zhang, 2010;
Zhu et al., 2018).

The use of RS products in monitoring, assessing, and mapping biodiversity is becoming
increasingly popular due to its efficiency and high automatism (Luque et al., 2018; Wang and
Gamon, 2019) and to the possibility to collect data and information over large areas and at a
great frequency. Recent advancements in RS and Earth observation offer accessible and
promising possibilities for large-scale biodiversity monitoring (Petrou et al.,2015), and provide
extensive coverage, allowing for biodiversity upscaling from field to landscape and regional
scales (Gamon et al., 2020). Examples range from mapping epiphytic plant communities
(Palmroos et al., 2023) to bees and pollination related services (Galbraith et al., 2015), from
mapping floral resources for pollinators (Gonzales, 2022) and pollination types (Feilhauer et
al., 2016), to direct and indirect detection of insects (Rhodes at al., 2022; Wang et al., 2023).
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Data and products provided by RS for ES assessment and mapping include, among many
others, land cover maps for ecosystem extent, indicators of ecosystem conditions, phenology,
NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), Leaf Area
Index, NPP (Net Primary Production), terrain attributes such as slope, aspect and elevation,
damage impacts and ecosystem structure (LIDAR, SAR). These data and products provide
spatially explicit and, in the case of RSI, time-variant information that can be successfully used
as a proxy to assess and map biodiversity indicators and their variation over time.

In general, the assessment of ES indicators via RSl is an indirect process. This means that
the remotely sensed information is used as a proxy for some kind of variable (e.g., biomass
provision) which in turn is used as a proxy for the actual ES (e.g., habitat for biodiversity).
According to literature, two different approaches are commonly used to estimate in bio-
physical units the variables which underpin the provision of a given ES. The first category
directly uses the remotely sensed spectral signature or derived composite indexes and
includes statistical regressions and/or radiative transfer models. The second approach uses
RS data to generate land use/land cover classifications which are then linked to ES supply
and used as input for physically based models of ES assessment.

This report builds on the contents of previous deliverable reports released by SHOWCASE
partners, D1.3 (Overview of selected SHOWCASE biodiversity indicators, Séchaud et al.,
2021), D1.2 (Experimental framework and standardized protocols for EBAs described in first
version of a living document, Bretagnolle et al., 2021b), and D1.4 (Validated methods for
testing reliability of landscape metrics-based biodiversity indicators, Torresani et al., 2023).

2. Upscaling biodiversity indicators from plot to landscape scale:
predictors and methodological approach

2.1. Input data and target variables

Among the various types of possible farmland biodiversity indicators, whose use depends on
the scale considered, the specific context, and the expected application (Herzog and Franklin,
2016), all EBA project partners made a selection based on the following criteria: 1) scientific
support, 2) relevance at the European scale, 3) ease of data collection, 4) cost-effectiveness,
5) ecological meaning and 6) relevance for stakeholders. A further distinction has been made
between core indicators, i.e., those common to all EBAs, and optional indicators specific for
each EBAs. The selection of biodiversity indicators to model and map focused on the following
five core indicators:

¢ Wild bees: abundance (WBA) and species richness (WBR)
e Spiders: abundance (SpA) and species richness (SpR)
e Vascular plants: species richness (PlaR).

Wild bees are essential pollinators of farmland ecosystems, and their recent decline has
attracted public attention and raised awareness of the link between biodiversity and ES
(Matias et al., 2017). The factors behind their decline are multiple and complex, but habitat
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destruction, pesticide application and the loss of floral resources (and year-long availability)
have been shown to be important (Drossart and Gérard, 2020; Goulson et al. 2015).

Spiders are a large group of predator species, with several of them preying on agricultural
pest insects and thus reducing crop damages (Birkhofer et al., 2018; Riggi et al. 2024). Spiders
are sensitive to farming practices, and to vegetation composition and structure, therefore being
good indicators of management at field level (Rusch et al., 2014).

Farmland vascular plants are the primary producers at the basis of the food chain, being thus
essential to the maintenance and stability of higher trophic levels. Vascular plant diversity or
richness is particularly sensitive to field management (Moreira et al, 2023), but also to the
presence of pollinators or seed dispersers. Therefore, vascular plants are strong indicators of
total biodiversity across environmental gradients and broad taxonomic realms (Brunbjerg et
al., 2018), and they are widely studied and well documented.

L2uid Limburg

Solothurn g Bacs-Kiskun'
acs-Kiskun

,P.Imnr_mju

Guadalquivida F

0] 250 500 750 1,000 km
N .

Figure 1: Case study areas for upscaling EBA biodiversity core indicators: Hungary (small part
of the Bacs-Kiskun county), Portugal (Evora in Alentejo Central, and Beja in Baixo Alentejo),
Spain (Guadalquavida), Switzerland (Solothurn), and the Netherlands (Zuid-Limburg).

The five biodiversity core indicators have been modeled and upscaled from the field to the
landscape scale in five EBAs (Figure 1). All the EBAs with field data for the two years 2022
and 2023 were considered, with the addition of the 2022 data from the Swiss EBA whose
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numerosity and timely availability allowed for the analysis to be carried out in time to meet the
deadline of the present deliverable.

As the EBAs have been described in detail in a previous project deliverable report (Bretagnolle
et al., 2021a), only the information necessary for the biophysical contextualization of the
spatiotemporal dynamics of biodiversity indictors will be provided in this report. General
information about the CSAs where the selected EBAs are located is provided in Table 1.

Table 1: Scale of assessment, target area and land use in the five selected SHOWCASE EBAs.

Extent of spatial Elevation
EBA Target area assessment range Target land use
(and resolution) (m a.s.l.)

HU Bacs-Kiskun 200.2 km? 89-105 Arable land
(10 m)
ES Guadalquivida 433.2 km? 2-347 Permanent crops
(10 m) (stone fruit orchards)
PT Municipalities of Evora, Portel, 567.9 km? 34-420 Permanent crops
Cuba, Vidigueira and Beja (10 m) (olive orchards)
NL Zuid-Limburg 170.0 km?2 5-317 Arable land
(10 m)
CH Solothurn 196.6 km? 321-796 Arable land
(10 m)

The modeling approach tested the predictive accuracy of two distinct statistical methods: a
“classical” approach based on multiple linear regressions (MLR), and a machine learning (ML)
technique, i.e. Random Forest (RF) (Jordan and Mitchel, 2015; Uddin et al, 2019). Such ML
techniques have been recently used to map different environmental variables including plant
and animal biodiversity (Cabezas et al., 2016; Melin et al., 2019; Zhao et al., 2022). In both
cases, the same set of predictors were used in all CSAs. This required the creation of a stack
of raster maps of the predictors for each CSA,; to this end, all rasters were harmonized in terms
of extent and reference systems. This was the same for all CSAs, i.e., the coordinate reference
system ETRS89-LAEA Europe, also known in the EPSG Geodetic Parameter Dataset under
the identifier: EPSG:3035, which represents the EEA and LUCAS reference grid.

In all CSAs, the raster stack of predictors for biodiversity indicators included the same set of
27 variables, belonging to four different groups:

1. Landscape elements: proximity to roads and proximity to Small Woody Features (SWF,
Copernicus land Monitoring Services, CLMS 2018)

2. Terrain descriptors: elevation, aspect, slope, and their derivatives (8 variables)

3. Spectral signatures and RSI from Copernicus Sentinel 2 (14 variables)

4. Biodiversity management (3 variables)

The following table lists the predictors used for MLR calibration and RF implementation and
their sources.
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Table 2: List of predictors for upscaling SHOWCASE core biodiversity indicators.

Group Predictor Unit Source Resolution
1 Road proximity? m GIS calculation 10m
1 SWF proximity® m GIS calculation 10m
2 Elevation m a.s.l. Copernicus DEM 30m
2 Aspect degree from North GIS calculation 30m
2 Slope % GIS calculation 30m
2 Catchment slope % GIS calculation 30m
2 Catchment area m? GIS calculation 30m
2 Mod. Catchment area m? GIS calculation 30m
2 Topographic. wetness Index m/rad GIS calculation 30m
2 Valley depth m GIS calculation 30m
3 Bl, bare Index - Sentinel 2, GEE 20 m
3 Blue (B2, 490 nm) - Sentinel 2, GEE 10 m
3 Green (B3, 560 nm) - Sentinel 2, GEE 10 m
3 IR, infra-red (B8, 842 nm) - Sentinel 2, GEE 20 m
3 NDBSI, Norm. Diff. Bare Soil Index - Sentinel 2, GEE 10 m
3 NDSI, Normalized Diff. Soil Index - Sentinel 2, GEE 10 m
3 NDVI, Norm. Diff. Vegetation Index - Sentinel 2, GEE 10 m
3 NIR, Near Infra-Red (B8A, 865 nm) - Sentinel 2, GEE 10 m
3 Red (B4, 665 nm) - Sentinel 2, GEE 10m
3 So0Sa, Soil Salinity - Sentinel 2, GEE 10 m
3 SoSI1, Soil Salinity Index1 - Sentinel 2, GEE 10 m
3 So0SI2, Soil Salinity Index2 - Sentinel 2, GEE 10 m
3 So0SI3, Soil Salinity Index3 - Sentinel 2, GEE 10 m
3 SWIR Short Wave IR (B11,1610 nm) - Sentinel 2, GEE 20 m
4 Biodiversity Intervention Dummy 0,1 EBA partners -

4 Year of intervention Dummy 0,1 EBA partners -
4 Round Dummy 0,1 EBA partners -

a Source of vector data: Open Street Map. © OpenStreetMap contributors. Available under the Open Database
License from: openstreetmap.org.
b Source of raster data (res. 5 m): https://land.copernicus.eu/en/products/high-resolution-layer-small-woody-
features/small-woody-features-2018. https://doi.org/10.2909/a8e683b1-2f96-45¢c8-827f-580a79413018

Road proximity effects on forests and farmland biodiversity are well documented in the
literature (Marcantonio et al., 2013; Fahrig et al. 2015; Bennet, 2017) due to their edge effects
resulting in changes in the biotic and abiotic conditions, such as species composition,
temperature, moisture, light availability, and wind speed (Delgado et al., 2007; Flory and Clay,
2009; Watkins et al., 2003). In agricultural landscapes where most of the native vegetation
has been removed for cultivation, semi-natural road edges are considered valuable reservoirs
of biological diversity because they may maintain several native plant communities (Delgado
et al., 2007; Reed et al., 1996). To account for the influence of road networks on biodiversity
indicators, a 10m resolution raster of the proximity to roads was created for each CSA (Figure
2) from the vector layers available from OpenStreetMap (OSM, 2021) and using GDAL
(Rouault et al., 2024) raster analysis tools implemented in QGIS v3.22.11 (QGIS.org, 2022).
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Figure 2: Examples of road proximity raster maps (resolution 10m) for the Dutch (left) and the
Portuguese CSA.

To account for the effects on biodiversity abundance and richness due to the presence of
landscape elements such as hedgerows, woodlots, isolated trees, and tree lines in the
agrarian landscape, the 2018 5m resolution raster provided by EEA for the whole of Europe
(Copernicus Land Monitoring Services, 2018) provided the basis to derive 10m resolution
proximity maps in each CSA (Figure 3). These agricultural landscape features enhance the
natural capital and support biodiversity, providing ES such as soil protection and pollination
(Aviron et al., 2023; Czucz et al., 2022; England et al., 2020).
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Figure 3: Examples of SWF proximity raster maps (resolution 10m) for the Hungarian (left) and
the Swiss CSA.
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The effects of local topography on biodiversity indicators were considered by including in the
stack of predictors a set of eight terrain attributes derived from the Copernicus 30m resolution
digital elevation model (DEM, Copernicus 2018) available for all CSAs (Figure 4). Topography
is an important non-zonal factor affecting biotic and abiotic factors, with effects on vegetation
patterns and characteristics (Yang and Da, 2006), species distribution (Canton, 2004), and
pollinator species richness (Le Clec'h et al., 2019), due to variations in natural illumination,
temperature, moisture, and soil properties (Bennie et al., 2008, Carletti et al., 2008; Gong et
al., 2008). The predictors derived from the DEM include aspect, slope, catchment slope,
catchment area, modified catchment area, topographic wetness index, and valley depth
(Boehner, and Selige, 2006), and were computed resorting to SAGA-GIS tools implemented
in QGIS (Conrad et al., 2015).

Figure 4: Examples of DEM derivates raster maps (resolution 30m) for the Spanish CSA: top-left
elevation, top-right slope, bottom-left valley depth, and bottom-right topographic wetness index.

The third group of predictors is represented by time-dependent RS data. Using GEE (Gorelick
et al, 2017) JavaScript API, available at the URL https://code.earthengine.google.com/, the
vector layer with the boundary of each CSA was imported as an ESRI format shape file (EPSG
4326). As field surveys in each EBA occurred twice per year, a four-week time frame was set
for each round of sampling to extract the required spectral bands. These were further used to
calculate soil and vegetation RSI, such as the NDVI (Figure 5). For each band, it was possible
to specify not only the time frame of interest and the % of cloud cover tolerance but also the
statistics relevant to the goal of the assessment (e.g. median value, mean value, maximum).
To upscale the SHOWCASE biodiversity core indicators, raster maps of monthly median
values of RS images were extracted for each CSA, considering the time frame set by the two
rounds of sampling and setting the cloud pixel percentage <10%. The following spectral bands
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were extracted for each sampling round each year (four weeks median value): B2 (blue,
central wavelength 490 nm), B3 (green, central wavelength 560 nm), B4 (red, central
wavelength 665 nm), B8 (IR, central wavelength 842 nm), B8A (IRn, central wavelength 865
nm) and B11 (SWIR, central wavelength 1610 nm). The first four have a 10m spatial
resolution, while the last two have a 20m spatial resolution. The above listed bands were used
within the GEE JavaScript to calculate the following RSls (Figure 3): NDVI, NDBSI
(Normalized Difference Bare Soil Index), NDSI (Normalized Difference Soil Index), Bl (Bare
Index), SoSI1 (Soil Salinity Index 1), S0SI2 (Soil Salinity Index 2), SoSI3 (Soil Salinity Index
3), and SOSA (SQil Salinity).
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Figure 5. GEE JavaScript console: example of RSls computation for May 2023 in the Portuguese
EBA of Alentejo.

Examples of vegetation (NDVI) and soil (NDBSI) RSI are displayed in Figure 6 for the
Portuguese and the Hungarian CSAs.

The last group of predictors is represented by 0-1 dummy coded variables to account i) for the
effect of biodiversity management on the measured indicators, i.e. control vs. intervention
providing in this way two different biodiversity management scenarios to compare, ii) for the
sampling round (i.e., seasonal variability), and iii) for annual variability. In this way it is possible
to assess not only the effect of treatment over the considered spatial domain, but also to
explicitly account for variation over time and possibly forecast future trends by using the time
variant RSI.
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[ E—  S—"

Figure 6. NDVI (15t and 3" row) and NDBSI (2"¢ and 4" row) maps for round 1 and 2 in years 2022
and 2023 in the Portuguese (upper two rows) and Hungarian (bottom two rows) CSAs.
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Before the spatial joining with the predictors, the experimental field data from each EBA were
transformed into 0-1 indicator data resorting to an interval normalization (or min-max scaling)
which returns data within a 0 to 1 interval (Wu et al., 2013):

Indi = (xi-max) / (max-min) Eq. (1)

where Indi is the normalized [0-1] value of the abundance or richness indicator, x; is the actual
value (i.e. the individuals or the species count in any specific field), max and min are the
maximum and the minimum respectively of each variable observed in the dataset. The formula
in Eq. (1) gives high priority (i.e. values close to 1) to higher values of the considered indicator;
the lowest value, 0, does not necessarily indicate that no individuals or species were observed,
but that it is the lowest in the considered area at the time of samples collection. This data
transformation was preferred to standardization as it preserves the original distribution of the
data and retains the linear relationship between original and transformed values (Cabello-
Solorzano et al, 2023). Also, constraining data within a 0-1 interval allows for immediate
comparisons among indicators across scenarios, locations and different moments in time.

Figure 7 illustrates the flowchart of the mapping approach followed in Task 2.7, from raster
data acquisition to the generation of upscaled maps of standardized biodiversity indicators.
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Figure 7. Flowchart illustrating the steps of biodiversity indicators assessment and mapping
resorting to Remote Sensing Indices and time-invariant covariates.
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2.2 Comparing model performance: MLR vs. RF

In each EBA two statistical methods were tested to identify which could better provide spatial
estimates of the SHOWCASE core biodiversity indicators at the landscape scale. Multiple
linear regressions (MLR) were calibrated resorting to a sequential replacement approach. This
consists of iteratively adding and removing predictors in the model to identify a subset of
predictors resulting in the best performing model, i.e. a model with the lowest prediction errors.
There are three possible strategies of stepwise regression (James et al. 2013; Bruce et al,
2020):

1. Forward selection, which starts with an intercept but no predictors in the model, iteratively
adds the most contributive predictors, and stops when the improvement is no longer
statistically significant.

2. Backward selection (or backward elimination), which starts with all predictors in the model
(full model), iteratively removes the least contributive predictors, and stops when you have
a model where all predictors are statistically significant.

3. Stepwise selection (or sequential replacement), which is a combination of forward and
backward selections. It starts with no predictors, then sequentially adds the most
contributive predictors (like forward selection). After adding each new variable, it removes
any variables that no longer provide an improvement in the model fit (like backward
selection).

The third strategy was adopted and the underlying assumptions of MLR were checked by
inspection of bivariate scatterplots of the variables of interest and by checking the normality of
regression residuals.

Random forests were implemented in Rv.4.3.2 (R Core Team, 2013) using Rstudio 2023.06.0
(RStudio Team, 2020) and the package ‘randomForest’ version 4.7-1.1 (Liaw and Wiener
2002). Each forest ensemble was composed of 500 regression trees, and for each ensemble
an extractor function for variable importance measures was applied based on the total
decrease in node impurities from splitting on the variable, averaged over all trees. This allowed
us to assess and plot the predictive power of each variable.

Calibration errors for MLR and RF were assessed by calculating the values of mean error
(ME), absolute error (AE), rooted mean squared error (RMSE), index of agreement (IoA) and
R2. The IoA (Willmot, 1981) is a standardized measure of the degree of model prediction error
which varies between 0 and 1, and is calculated as follows:

?zl(OL_Pl)Z
i=1(IPi— 0]+]0;—0])?

IoA=1-— Eq. (2)

where O; is the observation value and P; is the predicted value and O is the average
observation values. The index of agreement represents the ratio of the mean square error and
the potential error. The agreement value of 1 indicates a perfect match, and 0 indicates no
agreement at all. The index of agreement can detect additive and proportional differences in
the observed and simulated means and variances; however, l0A is overly sensitive to extreme
values due to the squared differences.
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2.3. Application of mechanistic models for pollinator abundance

A plethora of models is available to relate environmental conditions to biodiversity levels.
However, there are trade-offs between their complexity, the information required to
parameterize them, and the kind of outputs they can provide. Task 2.7 compared two
conceptually different modelling approaches: (i) data-driven models i.e. statistical approaches
calibrated on the biodiversity indicator data from 5 EBAs and (ii) the mechanistic model of
Lonsdorf et al. (2009) as implemented in Zulian et al. (2013) to estimate pollinator abundance
using the k.explorer interface (IMP, 2023). The model output is a dimensionless score with
values ranging from 0 to 1, describing the expected relative pollinator abundance to a given
location across the landscape. The model relies on the assessment of nesting and foraging
suitability of the landscape for pollinators, calculated using expert assessment and available
land cover maps, expressed in the form of lookup tables that link land cover types with the
availability of floral and nesting resources. From the combination of nesting and foraging
suitability a habitat suitability map for relative pollinator abundance at the landscape scale is
derived. This is in turn corrected by an estimation of insect activity based on average
temperature and solar radiation, which when below a certain threshold affect pollinator
abundance outside the nesting sites (Figure 8).
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Figure 8. Flowchart outlining the structure of the p-olﬁn;tion model which results in the
calculation of the relative pollinator abundance for the Alentejo CSA (Portugal).

The climatic data used for the assessment were derived from WorldClim v2.1, with a 30s
resolution (Fick et al., 2017) The land cover dataset plays a major role in determining model
outcomes. Table 3 presents an example of land cover ranking table where each land cover
type has a score from 0 to 1, according to its potential to provide floral and nesting resources.
The last available vector layer version of the CORINE Land Cover (2018) was used. This
model and its modifications have already been used to infer spatially explicit current (Koh et
al., 2016; Zhao et al., 2019) and future trends in pollinators/pollination (Chaplin-Kramer et al.,
2019) and to estimate pollinator natural capital (Ricketts and Lonsdorf, 2013).
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The pollinator abundance estimated with the mechanistic model in each CSA was eventually
compared for the target land use with that resulting from the application of the data-driven
models calibrated with the observations of pollinator abundance from each EBA for the control
sites. The relative differences were then assessed over the target land use in the whole area
and mapped to highlight the magnitude and sign of the differences between the two
approaches in a spatially explicit context.

Table 3: Examples of Floral Availability (FA) and Nesting Suitability (NS) scores for the CORINE
Land Cover (CLC) types. HNV_F+/HNV_N+: high natural value farmland (additional scores).
From: Zulian et al., 2013

CLC code Description FA HNV F+ | NS | HNV N+
111 Continuous urban fabric 0050 01 |0
112 Discontinuous urban fabric 03 |0 03 |0
121 Industrial or commercial units 005 |0 01 |0
122 Road and rail networks and associated land 0250 03 |0
123 Port areas 0 0 03 |0
124 Airports 01 |0 03 |0
13 Mineral exiraction sites 0050 03 |0
132 Dump sites 0 0 005 |0
133 Construction sites ] ] 01 |0
141 Green urban areas 025 |0 03 |0
142 Sport and leisure facilities 005]0 03 |0
211 MNon-irrgated arable land* 02 |0 02 [0
212 Permanently irrigated land” 005 |0 02 |0
213 Rice fields 005|0 02 |0
221 Vineyards 06 |02 04 |01
222 Fruit trees and berry plantations 09 |0 04 |01
599 Ok g intens]‘ge 02 |02 04 |01
extensive 06 |02 06 |01
23 Pastures 02 |02 03 | 0.2
241 Annual crops associated with permanent crops 05 |02 04 |01
242 Complex culivation patterns 04 |02 04 |07
243 Land principally occupied by agriculiure, with significant areas of 075 | 0.05 07 |o1
natural vegetation
244 Agro-forestry areas™" 05 |04 1 0
I Broad-leaved forest""" 08 |0 08 |0
312 Coniferous forest™” 03 |0 08 |0
33 Mixed forest™" 08 |0 08 |0
a2 Natural grasslands 1 0 08 |0
322 Moors and heathland 1 0 09 [0
323 Sclerophylious vegelation 07510 09 |0
324 Transitional woodland-shrub 085 |0 i 0
331 Beaches, dunes, sands 01 0 03 (0
332 Bare rocks 0 0 0 0
333 Sparsely vegetated areas 035 (0 07 |0
334 Burnt areas 02 [0 03 |0
335 laciers and perpetual snow 0 0 ] 0
41 inland marshes 075 |0 03 |0
412 Peat bogs 05 |0 03 |0
41 Salt marshes 055 |0 03 |0
422 Salines a 0 { 0
423 Intertidal flats 0 0 0 0
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2.4. Biodiversity indicators as proxy for ecosystem services
assessment and mapping

As foreseen in the GA, Task 2.7 investigated the scale dependency of spatial patterns and
temporal dynamics of the selected biodiversity indicators and their relations with
environmental and anthropic drivers. The biodiversity indicators selected provide the basis to
assess ecosystem services provision under the two different management scenarios, i.e.
control and intervention, at landscape scale. The five available biodiversity indicators
stemming from the EBAs field surveys, were then used as proxies for specific ecosystem
services allowing the estimation and mapping of their potential supply.

In the following paragraphs a brief literature review is provided to highlight the use of
biodiversity indicators as proxy of ecosystem service provision.

Using pollinators abundance as a proxy for pollination ecosystem service provision is a
common approach in ecological studies. Garibaldi et al. (2013) examined the relationship
between pollinator abundance (including wild bees and honeybees) and crop pollination
services. It was found that higher pollinator abundance, particularly of wild bees, was strongly
correlated with increased fruit set in crops, demonstrating its use as a proxy for pollination
service provision. The role of pollinator abundance in ensuring pollination services for global
food production was highlighted by Klein et al. (2007) who used pollinator abundance data to
estimate pollination service provision across different landscapes and crops in intensively
managed agricultural systems. In heterogeneous landscapes with diverse habitats, Ricketts
et al. (2008) synthesizing the results of 23 studies found that pollinator abundance was a
reliable indicator of pollination service provision, and in their review paper Potts et al. (2016)
highlighted that pollinator abundance was a critical indicator for evaluating the health of
pollination ecosystems and their services. Ollerton et al. (2014) remarked that declines in
pollinator abundance were directly linked to reduced pollination services, emphasizing the
importance of monitoring pollinator populations, particularly in the context of climate change
and habitat loss. The global meta-analysis by Dainese et al. (2019) used pollinator abundance
as a proxy to quantify the contribution of biodiversity to crop pollination services across diverse
agricultural systems, highlighting its robustness as strong proxy of pollination services.

Pollinators species richness is also commonly used as a proxy for pollination service
provision, often alongside or in combination with pollinator abundance. While abundance
measures the number of individual pollinators, species richness reflects the diversity of
pollinator species present in an ecosystem. Both metrics are important because they capture
different aspects of pollinator communities that contribute to pollination services. Garibaldi et
al. (2011) found that higher pollinator species richness was associated with more stable and
efficient pollination services, particularly in agricultural landscapes and that species richness
was a better predictor of pollination stability than pollinator abundance alone, as diverse
pollinator communities provided functional redundancy. Similarly, Frind et al. (2013)
highlighted that pollinator species richness enhanced pollination services through functional
complementarity, where different species contributed unique pollination behaviors, showing
that species richness was a key driver of pollination efficiency, as diverse communities filled
more ecological niches. used historical data to show that declines in pollinator species
richness were associated with reduced pollination services in natural and agricultural
ecosystems. In a study using historical data, Bartomeus et al. (2013) found that species
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richness was a reliable indicator of pollination service provision over time and that declines in
pollinator species richness were associated with reduced pollination services in natural and
agricultural ecosystems. The relevance of pollinator species richness at regional scales was
pointed out by Winfree et al. (2018), showing that diverse pollinator communities provided
more consistent pollination services across different locations and times and that species
richness was critical for maintaining pollination services in spatially and temporally variable
environments. In the already cited global meta-analysis, Dainese et al, (2019) remarked that
species richness was a critical factor in ensuring effective pollination services across diverse
agricultural systems, adding that higher pollinator species richness significantly increased crop
yield and quality, independent of pollinator abundance. All these studies highlighted how the
relevance of species richness in the provision of pollination services derives from different
factors:

i) functional complementarity: different pollinator species often have unique behaviors
(e.g., flower preferences, foraging times, or pollination techniques) that collectively enhance
pollination efficiency;

ii) resilience: diverse pollinator communities are more resilient to environmental
changes, ensuring stable pollination services even if some species decline; and

i) niche partitioning: species richness allows for better utilization of available floral
resources, reducing competition and increasing overall pollination success.

In general, then, it can be concluded that pollinator abundance is often used to measure the
quantity of pollinators, which is important for high-density flower visitation, while species
richness captures the diversity of pollinators, which is crucial for ensuring pollination across
different plant species, times, and environmental conditions. Both metrics are complementary
and were often used together to provide a more comprehensive understanding of pollination
service provision.

Spiders are important natural enemies of pests in agricultural and natural ecosystems
(Reichert and Lockley, 1984), and their abundance and species richness have been often
used as proxies for pest control regulating ecosystem services. Snyder and Wise (2001)
examined the role of spider abundance and diversity in controlling herbivorous pests in
agricultural fields. They found that higher spider abundance reduced pest populations, while
species richness enhanced the stability of pest control over time, showing that both spider
abundance and species richness were important for effective pest control, with species
richness providing functional redundancy and resilience. Schmidt et al. (2003) investigated
the role of spider abundance and diversity in controlling pest populations in cereal crops,
where both metrics were positively correlated with reduced pest damage and increased crop
yield, concluding that spider abundance and species richness were complementary proxies
for pest control services. In assessing the importance of spider abundance and species
richness in controlling pest populations across different agroecosystems in Europe and the
US, Nyffeler and Sunderland (2003) concluded that diverse spider communities were more
effective at pest suppression than single-species dominance as they jointly enhanced the
stability and effectiveness of pest control services. The influence of local management and
landscape complexity on spider abundance and species richness was investigated by Saqib
et al. (2020), who found that complex landscapes supported higher spider diversity, which in
turn enhanced pest suppression.
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As for pollinators, both spider abundance and species richness are widely used as proxies for
pest control services in agroecosystems: while abundance provides a direct measure of
predation pressure, species richness enhances the stability, efficiency, and resilience of pest
control. Studies often recommend promoting both metrics through habitat management (e.g.,
maintaining semi-natural habitats, reducing pesticide use) to optimize pest control services.

The fifth and last biodiversity core indicator surveyed in the SHOWCASE EBAs and addressed
in this Deliverable report is vascular plants species richness. This indicator has often been
used as a proxy for the supply of various ecosystem services, as plant diversity plays a critical
role in maintaining several ecosystem functions. Here follow some examples from the scientific
literature where vascular plant species richness has been used to represent ecosystem
service supply. For example, Hector et al. (1999) simulated the impact of loss of plant diversity
on primary productivity (provisioning service) by synthesizing grassland communities with
different numbers of plant species. Results differed in detail at the eight European sites tested,
but there was an overall log-linear reduction of average aboveground biomass with loss of
species. In their synthesis paper Hooper et al. (2005) emphasized the importance of vascular
plant species richness for ecosystem services such as primary production, decomposition,
and nutrient cycling, with higher plant species richness enhancing the efficiency and stability
of ecosystem services provision. From the meta-analysis of experimental works (N = 466)
spanning 50 provided by Balvanera et al. (2006), it resulted that vascular plants species
richness was positively correlated with ecosystem services such as biomass production, soil
fertility, and pest regulation, making it a robust proxy for ecosystem services supply across a
wide range of ecosystems. Diaz et al. (2007) investigated the role of plant diversity in
maintaining ecosystem multifunctionality, focusing on regulating services such as pollination
support, soil fertility, and water regulation, and emphasizing the role of plant diversity in
maintaining ecosystem multifunctionality in natural and semi-natural environments. Plant
functional composition proved also to be a key driver of soil-based ecosystem services, as
highlighted by Fornara and Tilman (2008) who found that diverse plant communities enhanced
soil carbon storage and nitrogen availability, representing then a proxy for carbon
sequestration and soil nutrient cycling services, with higher plant diversity leading to greater
soil carbon and nitrogen accumulation in agriculturally degraded soils. Focusing on grasslands
and other herbaceous ecosystems, Zavaleta et al. (2010) and Lavorel et al. (2011)
demonstrated that vascular plant species richness was essential for maintaining multiple
ecosystem services, including forage production, soil fertility, water regulation and carbon
storage. Both works emphasized that higher plant diversity supports greater functional
diversity, which underpins ecosystem service provision.

Vascular plants species richness underpins then the supply of different categories of
ecosystem services, including both provisioning and regulating services. The former
encompass biomass production, forage provision, and genetic material, while the latter include
nutrient cycling and regulation of soil quality, regulation of water quality, and soil erosion
control. Furthermore, plant diversity provides habitat for other organisms, supporting
biodiversity and associated services like pollination and pest control. Habitat provisioning, and
the biodiversity within, is considered a type of “supporting” ecosystem service (Maes, 2012;
Bastian, 2013), but this category is not explicitly considered in all ecosystem services
classification scheme, the most notable example being provided by the Common International
Classification of Ecosystem Services (CICES, Haines-Young and Potschin, 2018), whose
hierarchically structured classification is one of the most used in the scientific literature. In the
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CICES framework, supporting services or ecological functions are considered as the
underpinning structures and processes that ultimately give rise to ecosystem services. A
classification of these supporting services is not covered in CICES which seeks to identify the
final services that link to the goods and benefits that are valued by people.

According to the CICES scheme version 5.1, currently under revision, the biodiversity
indicators derived from the SHOWCASE EBAs survey can provide proxies for the following
ecosystem services:

i) Wild bees’ abundance and species richness indicators: proxies for pollination
(regulation and maintenance - biotic ecosystem service, CICES v5.1 code 2.2.2.1);
ii) Spiders’ abundance and species richness indicators: proxies for pest control
(regulation and maintenance - biotic ecosystem service, CICES v5.1 code 2.2.3.1);
iii) Vascular plants species richness indicator: in this case as none of the possible

ecosystem services (three provisioning services and seven regulation and
maintenance according to the CICES classification) linked to plant species
richness has been monitored in the SHOWCASE EBAs fields, it is considered more
appropriate within the SHOWCASE project framework to use this indicator as a
proxy for the supporting ecosystem service of habitat provision for biodiversity.

The spatiotemporal modelling and mapping of the five core biodiversity indicators provided
then straightforward all the information and outputs necessary to assess and map the related
ecosystem services: pollination and pest control regulation services are complementary
depicted by the spatiotemporal joint mapping of abundance and species richness of wild bees
and spiders respectively, both indicators being combined in a single 0-1 normalized indicator
of ES provision, i.e. the two indicators are summed and then normalized, while indicator maps
of vascular plants species richness provide the spatiotemporal modelling outputs for the
supporting ecosystem service of habitat provision for biodiversity.
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3. Upscaling biodiversity indicators from plot to landscape scale:
results for five SHOWCASE EBAs

This section of the report illustrates the results of the spatiotemporal modelling of biodiversity
indicator data for the five selected SHWOCASE core indicators in five EBAs: Hungary, Spain,
Portugal, the Netherlands and Switzerland. All the data at the base of the analysis and
modelling were provided by the SHOWCASE EBA partners and have been collected between
2022 and 2023 following the SHOWCASE biodiversity survey protocol (Bretagnolle et al.,
2021b). In the case of the Dutch EBA, data were available also for 2021, while of the Swiss
EBA data were available only for 2022. Data were provided in the form of excel files with a
standardized format used in all EBAs (Figure 9). For all data points coordinates were provided
in the EPSG 4326 reference system (WGS84).
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Figure 9. Example of standard excel data sheet for field observations with individual and
species counts.

The data collected by EBA partners were first processed to calculate the sums of individuals
and the number of species recorded in each field (control and intervention) in each EBA for
every round of sampling and for the two years. The detailed description of the intervention in
each EBA is given by Bretagnolle et al. (2021a). In the case of arable land (i.e. HU, NL and
CH EBAs), to account for margin effects and for the presence of the floral strips at the verge
of the intervention fields on biodiversity indicators, the observations from each field/round were
divided into two groups, the first next to the field verge and the second referred to the center
of the field. In the case of permanent crops (ES and PT EBASs) this division was not applicable
as the interventions (i.e. flower strips) are localized in between the orchard rows.

The data (individuals sums and number of species) were then 0-1 normalized and joined with
the set of predictors described in the previous section based on their coordinates to be
analyzed for the spatiotemporal modelling.

The following sub-sections present the main results for upscaling the field scale observations
in each EBA to the landscape scale in the corresponding CSA.
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3.1 Hungarian EBA

The Hungarian CSA encompassing the EBA fields is in Central Hungary, in the Kiskunsag
area, in the Hungarian part of the Danube-Tisza valley (Figure 10). The area has an extent of
ca. 20,000 ha with an elevation ranging from 89 to 105 m a.s.l., and stretches for ca. 30 km in
the North-South direction, parallel to the course of the Danube River to the west, and is
bordered to the east by the 35,722 ha Natura 2000 area of the Saline lakes of Kiskunsag and
the Turjan region of Orjeg (Kiskunsagi szikes tavak és az 6rjegi turjanvidék, HUKN10002)
which occupies ca. 4596 ha of the south-eastern part of the CSA.

PR\ — cj”'/\“

/4

[ ] HU CSA \
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7] Natura2000 site \ |
* EBA locations )

Figure 10. Geographical location of the Hungarian CSA.

The Natura 2000 site includes four shallow open water sodic-alkaline pans, three major sodic-
alkaline reedbeds and an associated mosaic of saline marshes, meadows, aquaculture ponds
and irrigated land. It is the largest and most important area of saline lakes and flats between
the Danube and Tisza rivers in the Great Hungarian Plain. The Site supports notable species
of breeding, migrating, wintering and resident birds, including the great bustard (Otis tarda),
pied avocet (Recurvirostra avosetta), Eurasian bittern (Botaurus stellaris) and red-breasted
goose (Branta ruficollis). It hosts several noteworthy plant species and communities endemic
to the Pannonic biogeographic region, including Aster tripolium ssp. pannonicus. The lakes
play an important role in the retention and storage of water and the regulation of the
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groundwater level in the surrounding area. Currently the Site is mainly used as extensive
grassland, and for reed harvesting and other agricultural activities. According to CORINE Land
Cover (2018), agricultural land occupies 85.5% of the CSA, with 81% of non-irrigated
agricultural land (13861 ha), 15.0% of extensive grassland (2993 ha), 0.51% of areas with
complex cultivation patterns (102 ha), and 0.73% of areas principally occupied by agriculture,
with significant areas of natural vegetation (147 ha).

Following the SHOWCASE sampling protocol, the core indicator data were collected in two
rounds (May and July) in 2022 and 2023 from eight control fields and eight intervention fields.
Plant richness was sampled only once every year (in late spring-early summer). The
descriptive statistics of the five biodiversity indicators for the two years are summarized in
Table 4 for individual and species counts and their 0-1 normalized indicators.

Table 4: Descriptive statistics of the five SHOWCASE core indicators

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max
Counts

WBA 128 4.8 5.5 0.5 0.0 3.0 34.0
WBR 128 2.4 2.4 0.2 0.0 1.5 12.0
SpA 128 8.5 11.8 1.0 0.0 4.0 81.0
SpR 128 1.6 2.6 0.2 0.0 1.0 19.0
PlaR 64 15.6 11.8 1.5 0.0 12.5 46.0
Indicator (0-1)

Ind WBA 128 0.200 0.223 0.020 0.000 0.118 1.000
Ind WBR 128 0.284 0.274 0.024 0.000 0.191 1.000
Ind SpA 128 0.171 0.221 0.020 0.000 0.092 1.000
Ind SpR 128 0.242 0.337 0.030 0.000 0.108 1.000
Ind PlaR 64 0.338 0.271 0.034 0.000 0.263 1.000

Table 5 summarizes the descriptive statistics of the five normalized indicators for control and
intervention; statistically significant differences (p< 0.05) in indicator mean values were
detected for WBA, WBR, and PlaR indicators, but not for SpA and SpR, which showed higher
mean values observed for the control fields and lower for the intervention fields. Likewise, in
terms of location along the transect, mean indicator values were significantly higher at the field
margins than in the field center for WBA (0.282 vs. 0.117), WBR (0.414 vs.0.155) and PlaR
(0.530 vs. 0.147) but not for spiders, although both mean SpA and SpR indicators were higher
at the field margins (0.194 and 0.272) than in the field center (0.148 and 0.210). The same
responses were observed in both control and intervention fields with significantly higher mean
indicator values for WBA, WBR and PlaR at the field margins. Mean indicator values for the
second sampling round were higher in the control fields for WBA, WBR and SpR, while in the
intervention fields the increase was observed only for WBR and SpR. Wild bee abundance
appears constant in the two years of observation, while there was an increase in wild bee
richness in the second year, and this was observed in both control and intervention fields. In
2023 spider abundance increased in both control and intervention fields with respect to 2022,
while the number of species dropped in the control fields while remaining constant in the
intervention fields. In the two years, the number of vascular plants species remained constant
in the control fields, while in the intervention fields there was a clear increase in 2023, although
not statistically significant.
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Table 6 summarized the MLR coefficients for the normalized biodiversity indicators. Given the
geomorphology of the plain, regressors based on terrain attributes were not used, as a much
more detailed DEM with a higher resolution (<1 m) would have been necessary to properly
account for the influence of topography on biodiversity indicators.

Table 5: Descriptive statistics of the five SHOWCASE core indicators in the control and
intervention fields of the Hungarian EBA

Indicator Treatment  Means N Std.Dev. Std.Err. Min Median Max
Ind WBA Control 0.153 64 0.188 0.023 0.000 0.088 1.000
Intervention 0.246 64 0.245 0.031 0.000 0.172 1.000
All Groups 0.200 128 0.223 0.020 0.000 0.118 1.000
Ind WBR Control 0.206 64 0.234 0.029 0.000 0.143 1.000
Intervention 0.362 64 0.290 0.036 0.000 0.364 1.000
All Groups 0.284 128 0.274 0.024 0.000 0.191 1.000
Ind SpA Control 0.198 64 0.253 0.032 0.000 0.097 1.000
Intervention 0.143 64 0.181 0.023 0.000 0.080 1.000
All Groups 0.171 128 0.221 0.020 0.000 0.092 1.000
Ind SpR Control 0.270 64 0.352 0.044 0.000 0.111 1.000
Intervention 0.213 64 0.321 0.040 0.000 0.105 1.000
All Groups 0.242 128 0.337 0.030 0.000 0.108 1.000
Ind PlaR Control 0.233 32 0.130 0.023 0.000 0.232 0.450
Intervention 0.443 32 0.332 0.059 0.000 0.400 1.000
All Groups 0.338 64 0.271 0.034 0.000 0.263 1.000

Table 6: Coefficients of the MLR calibrated for the normalized biodiversity indicators; significant
coefficients in red (p <0.05) and blue (p<0.10)

Predictor WBA WBR SpA SpR PlaR
Intercept -5.76193 -0.41323 0.78523 0.69980 -0.10635
Dummy Treat 0.10016 0.17230 -0.00307 -0.05351 0.22816
Dummy Round 0.08937 0.04676 0.28064

Dummy Year 0.10831 0.03423 -0.04742 0.06028
Road prox -0.00033 -0.00011 -0.00032 -0.00008
SWF prox -0.00012 -0.00009 0.00013 0.00014 -0.00001
Bl -7.66281 18.47382

blue -0.00208 -0.00059 0.00050

green 0.00418 0.00023

IR -0.00142 0.00027 0.00049 -0.00134
Irn -0.00194

NDBSI/ 4.58230 -3.06751 -1.95857 -1.15849 6.46509
NDSI/ 1.22442 4.50094 2.99775 -10.68093 1.84071
NDVI 6.79444 -3.33803 11.37421 10.39707
red 0.00584 -0.00031

SOSA 0.00048 0.00215
SOSI2 -0.00064 0.00022 0.00014 -0.00171 -0.00096
SOSI3 -0.00009

SWIR -0.00021 0.00019 -0.00108
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Adopting the same set of predictors, random forests were calibrated for each indicator,
providing an assessment of the relevance of each predictor expressed in terms of node purity,
i.e. the capacity of each predictor to split the regression tree with an increase in homogeneity
in the data partitions (Table 7). The contribution of each predictor is graphically represented
in Figure 11, with order of relevance increasing along the Y axis.

Table 7: Relevance of RF predictors for the five biodiversity indicators in term of node purity;
colors highlight the most relevant predictors (orange > brown >light brown)

Predictor WBA Indicator WBA Indicator SpAIndicator SpRIndicator PlaR Indicator
NodePurity Rel.% NodePurity Rel.% NodePurity Rel.% NodePurity Rel.% NodePurity Rel.%
dummytreat 0.063 1.58% 0.293 4.39% 0.025 0.72% 0.121 1.13% 0.286 8.44%
dummy year 0.041 1.03% 0.054 0.81% 0.026 0.77% 0.240 2.24% 0.019 0.55%
dummyround 0.032 0.81% 0.089 1.34% 0.048 1.40% 0.509 4.74% 0.000 0.00%
swf_prox 0.267 6.74% 0.429 6.43% 0.141 4.11% 0.734 6.84% 0.267 7.88%
road_prox 0.251 6.32% 0.838 12.54% 0.206 6.01% 0.525 4.90% 0.366 10.83%
bi 0.188 4.74% 0.280 4.19% 0.162 4.73% 0.442 4.12% 0.202 5.98%
blue 0.227 5.72% 0.373 5.59% 0.152 4.44% 0.752 7.01% 0.143 4.24%
green 0.258 6.49% 0.335 5.02% 0.179 5.24% 0.808 7.53% 0.173 5.11%
ir 0.215 5.41% 0.359 5.38% 0.230 6.73% 0.524 4.89% 0.165 4.88%
i 0.274 6.90% 0.449 6.73% 0.239 6.98% 0.511 4.76% 0.174 5.15%
ndbsi 0.206 5.20% 0.377 5.64% 0.192 5.61% 0.440 4.10% 0.295 8.72%
ndsi 0.193 4.85% 0.338 5.05% 0.145 4.24% 0.672 6.26% 0.189 5.59%
ndvi 0.243 6.13% 0.343 5.14% 0.318 9.29% 0.607 5.66% 0.207 6.13%
red 0.210 5.28% 0.320 4.79% 0.235 6.86% 0.722 6.73% 0.171 5.05%
sosa 0.265 6.67% 0.286 4.28% 0.260 7.61% 0.699 6.51% 0.120 3.54%
sosil 0.256 6.44% 0.346 5.17% 0.214 6.26% 0.710 6.62% 0.124 3.65%
s0si2 0.315 7.94% 0.437 6.54% 0.264 7.71% 0.504 4.70% 0.162 4.79%
50si3 0.231 5.83% 0.374 5.60% 0.207 6.06% 0.700 6.53% 0.126 3.74%
swir 0.234 5.91% 0.358 5.36% 0.178 5.21% 0.507 4.73% 0.195 5.75%
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Figure 11. RF variable contribution plots for WBA (top left), WBR (top left), SpA (bottom left) and
SpR (Bottom right) indicators.
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It is worth noting that some predictors are relevant in both approaches, e.g. proximity to the
field margins or to small woody features and RS soil salinity indicators, while the dummy coded
management predictors were the least powerful in the RF approach, being instead highly
significant in the MLR approach. The only notable exception is given by the PlaR indicator
whose treatment dummy variable ranked third in terms of predictive power in the RF approach
and was also highly significant in the MLR approach.

Table 8: Calibration error indices for the MLR and RF predictive models for the five biodiversity
indicators

Error WBA Indicator WBR Indicator SpA indicator SpR Indicator PlaR Indicator
indices RF MLR RF MLR RF MLR RF MLR RF MLR
ME -0.025 -0.001  0.002 -0.003 0.052 0.000 -0.034 -0.005 -0.116 -0.008
MSR 0.050 0.013 0.070  0.038 0.053 0.009 0.136 0.038 0.055 0.050
RMSE 0.252 0.116 0.277  0.195 0.258 0.093 0.311 0.194 0.267 0.223
R2 0.085 0.392 0.078  0.406 0.266 0.306 0.077 0.570 0.282 0.463
I0A 0.111 0.711 0.284 0.671 0.279 0638 0.504 0.834 0.154 0.763

Table 8 summarizes the calibration error for the predictive models built with the MLR and the
RF approach; from the values in the table, it appears clearly that in this case, and for all
indicators, MLR models outperform RF with systematically lower ME, MSR, RMSE and higher
values of oA and R? (Figure 12).
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Figure 12: Calibration error indices for the MLR and RF predictive models for the five biodiversity
indicators

The MLR models were then used to assess and map the five biodiversity indicators over the
entire agricultural land area and raster statistics were calculated for each map to assess the
average relative changes with respect to the baseline situation (year 1, control) and for each
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round the relative change due to the treatment implementation over the whole area. Although
not realistic, this assessment provides a quantitative, spatially explicit and time dynamic
evaluation of the potential impact of the biodiversity management practice implemented in the
EBA. Figure 13 illustrates the spatial distribution of the WBA indicator for control and
intervention scenarios during the two rounds in the two years. Table 9 reports the raster
statistics for each map and summarizes the relative changes with respect to the baseline and
to the control of each round.
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Figure 13: Predicted WBA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 9: WBA indicator raster statistics and relative changes with respect to the baseline and to
the control of each round.

Indicator year r treat WBAmean median stdev min max Relchange baseline RelChange T
WBA 2022 r1 treatiszero 0.079 0.053 0.086 0.000 0.891 -

WBA 2022 r1 treatisone 0.151 0.153 0.116 0.000 0.991 0.92 0.92
WBA 2022 r2 treatiszero 0.137 0.125 0.109 0.000 0.825 0.73

WBA 2022 r2 treatisone 0.228 0.225 0.123 0.000 0.925 1.89 0.67
WBA 2023 r1 treatiszero 0.068 0.034 0.079 0.000 0.683 -0.14

WBA 2023 r1 treatisone 0.143 0.134 0.105 0.000 0.783 0.81 1.11
WBA 2023 r2 treatiszero 0.127 0.127 0.105 0.000 0.670 0.62

WBA 2023 r2 treatisone 0.211 0.227 0.128 0.000 0.770 1.69 0.66

Average changes 0.93 0.84



34 | Page D2.7: Multiscale spatiotemporal modelling of biodiversity indicators

Figure 14 illustrates the spatial distribution of the WBR indicator for control and intervention
scenarios during the two rounds in the two years. Table 10 reports the raster statistics for each
map and summarizes the relative changes with respect to the baseline and to the control of
each round.

Table 10: WBR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat WBRmean median stdev min max  Relchange baseline  RelChange T
WBR 2022 r1 treatiszero 0.074 0.029 0.091 0.000 0.693 -
WBR 2022 r1 treatisone 0.201 0.201 0.138 0.000 0.866 1.73 1.73
WBR 2022 r2 treatiszero 0.169 0.162 0.126  0.000 0.848 1.30
WBR 2022 r2 treatisone 0.332 0.334 0.142 0.000 1.000 3.51 0.96
WBR 2023 r1 treatiszero 0.094 0.070 0.098 0.000 0.685 0.28
WBR 2023 r1 treatisone 0.239 0.242 0.133 0.000 0.857 2.25 1.54
WBR 2023 r2 treatiszero 0.234 0.247 0.132 0.000 0.780 2.18
WBR 2023 r2 treatisone 0.400 0.419 0.146 0.000 0.952 4.44 0.71
Average changes 2.24 1.23
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Figure 14: Predicted WBR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

For both bee indicators the treatment results in positive changes in all sampling rounds with
an average increase of 84 and 123% over the control for WBA and WBR respectively. Also,
the trend with respect to the baseline is consistently positive, except for the first round of the
second year where it resulted in a -14% average decrease of the WBA indicator.
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For spider indicators, figures 15 and 16 illustrate the spatial distribution of the normalized SpA
and SpR indicators respectively, for control and intervention scenarios during the two rounds
in the two years. Table 11 and 12 report the raster statistics for each map and summarize the
relative changes with respect to the baseline and to the control of each round.
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Figure 15: Predicted SpA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 11: SpA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat SpA mean median stdev min max Relchange baseline RelChange T
SpA 2022 r1 treatiszero 0.088 0.081 0.066 0.000 0.753 -

SpA 2022 r1 treatisone 0.086 0.077 0.066 0.000 0.750 -0.03 -0.031
SpA 2022 r2 treatiszero 0.117 0.119 0.068 0.000 0.720 0.33

SpA 2022 r2 treatisone 0.115 0.116 0.067 0.000 0.717 0.30 -0.024
SpA 2023 r1 treatiszero 0.118 0.113 0.062 0.000 0.701 0.34

SpA 2023 r1 treatisone 0.115 0.110 0.062 0.000 0.698 0.30 -0.025
SpA 2023 r2 treatiszero 0.173 0.162 0.068 0.000 0.750 0.95

SpA 2023 r2 treatisone 0.170 0.159 0.068 0.000 0.747 0.92 -0.018
Average changes 0.44 -0.025

Differently from the wild bee indicators, those for spiders were characterized by systematically
negative changes with respect to control within the same round, but the overall trend with
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respect to the baseline was positive for SpA for the second round of 2022 and for the first and
the second rounds in 2023. In the case of the SpR indicator the trend was positive only for the
second round in both 2022 and 2023.

Table 12: SpA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat SpR mean median stdev min max Relchange baseline RelChange T
SpR 2022 r1 treatiszero 0.150 0.131 0.132 0.000 1.000 -
SpR 2022 r1 treatisone 0.110 0.077 0.119 0.000 1.000 -0.27 -0.27
SpR 2022 r2 treatiszero 0.560 0.516 0.232 0.000 1.000 2.73
SpR 2022 r2 treatisone 0.511 0.463 0.238 0.000 1.000 2.40 -0.09
SpR 2023 r1 treatiszero 0.062 0.023 0.086 0.000 1.000 -0.59
SpR 2023 r1 treatisone 0.036 0.000 0.070 0.000 1.000 -0.76 -0.42
SpR 2023 r2 treatiszero 0.360 0.321 0.201 0.000 1.000 1.39
SpR 2023 r2 treatisone 0.308 0.268 0.201 0.000 1.000 1.05 -0.14
Average changes 0.85 -0.23
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Figure 16: Predicted SpR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.
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The spatiotemporal trend of the PlaR indicator is summarized in Table 13 and illustrated in
Figure 17. The average changes with respect to the baseline and the average increase in the
intervention fields with respect to the control ones during each round were almost equal, with
103 and 105% changes, respectively. Except for an average -5% decrease in the first round
of 2023, the trend was always positive.

Figure 17: Predicted PlaR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 13: PlaR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat PlaR mean median stdev min max Rel change baseline RelChange T

PlaR 2022 r1 treatiszero 0.164 0.145 0.154 0.000 1.000 -

PlaR 2022 r1 treatisone 0.359 0.373 0.197 0.000 1.000 1.19 1.19
PlaR 2022 r2 treatiszero 0.270 0.227 0.223 0.000 1.000 0.65

PlaR 2022 r2 treatisone 0.481 0.455 0.210 0.000 1.000 1.93 0.78
PlaR 2023 r1 treatiszero 0.155 0.143 0.127 0.000 1.000 -0.05

PlaR 2023 r1 treatisone 0.363 0.371 0.160 0.000 1.000 1.21 1.34
PlaR 2023 r2 treatiszero 0.245 0.249 0.159 0.000 1.000 0.49

PlaR 2023 r2 treatisone 0.460 0.477 0.178 0.000 1.000 1.81 0.88

Average changes 1.03 1.05
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To provide a composite indicator describing the overall biodiversity and its spatiotemporal
dynamics over the CSA, the estimates of the five core indicators for each round were summed,
and the sum 0-1 normalized. Results are shown in Figure 18, and the raster statistics are
summarized in Table 14 along with the relative changes with respect to the baseline and for
each round with respect to the control.
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Figure 18: Predicted BioDiv indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 14: BioDiv indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat BioDivmean median stdev min max  Relchange baseline RelChange T

BioDiv 2022 r1 treatiszero 0.151 0.136 0.096 0.000 1.000 -

BioDiv 2022 r1 treatisone 0.254 0.258 0.127 0.000 1.000 0.68 0.68
BioDiv 2022 r2 treatiszero 0.377 0.347 0.177 0.000 1.000 1.49

BioDiv 2022 r2 treatisone 0.463 0.443 0.172 0.000 1.000 2.06 0.23
BioDiv 2023 r1 treatiszero 0.148 0.130 0.094  0.000 1.000 -0.02

BioDiv 2023 r1 treatisone 0.247 0.244 0.106 0.000 1.000 0.63 0.67
BioDiv 2023 r2 treatiszero 0.339 0.332 0.148  0.000 1.000 1.24

BioDiv 2023 r2 treatisone 0.422 0.423 0.148 0.000 1.000 1.79 0.24
Average changes 1.12 0.45

The overall average biodiversity increase resulting from the implementation of the biodiversity
friendly management practice was equal to 45%, with marked increase above 60% observed
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for the first rounds, while in the second rounds the difference between control and intervention
were below 25% in both years. The overall trend with respect to the baseline was constantly
positive, apart from the first round in 2023 which saw a -2% decrease. The overall joint trend
of all the six indicators, with their synergies and trade-offs, is visually summarized in the radar
graph depicted in Figure 19. The indicators values shown in the figure are averaged over the
two rounds of each year
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Figure 19: Radar graph of the round-averaged indicators for the control and the intervention in
the two years of observation.
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3.2 Spanish EBA

The Spanish CSA encompassing the SHOWCASE EBA fields is in Andalusia (Guadalquivida
Community), in the alluvial plain on the Guadalquivir River and surrounding hills which border
the plain to the North and to the South of the riverbed. The area has an extension of 433.2
km?, with an elevation ranging from 2 to 347 m a.s.l. and stretches for ca. 90 km in the NE-
SW direction from the municipality of Palma del Rio to south of Sevilla. The area is highly
anthropized and characterized by intensive agricultural land use with fruit orchards and
vegetable farms. In the last decade there has been a strong land cover transition towards
citrus orchards which with 22,787 ha represent ca. 52% of the fruit orchard area (Junta de
Andalucia, 2023) and 23% of the whole CSA. Other fruit orchards cover an area of 11,214 ha,
with a share of 26% of the permanent crop area and 11% of the whole area. Olive orchards
are present on 9,267 ha, representing 21% of the permanent crop area and 9% of the whole
area, while vineyards occupy less than 50 ha, i.e. 0.1% of the permanent crop area and 0.05%
of the whole area. In total the area of permanent crops exceeds 43,315 ha, which represents
the target area for upscaling the core biodiversity indicators. Few seminatural elements are in
the agricultural fields, and tree elements are mostly present along the river streams.

* EBA locations

Permanent crops

Citrus orchards
I Fruit orchards
Olive orchards
B Vineyards
]
, 0 7.5 15 22.5 30 km |
| 2 2SEaaaa——" 22 S
| = B
B o e i

Figure 20. Geographical location of the Spanish CSA.

Following the SHOWCASE sampling protocol, the core indicator data were collected in two
rounds (March and April) in 2022 and 2023 from eighteen control fields and eighteen
intervention fields. Plant richness was sampled only once every year, in April 2022 (second
round) and in March 2023 (first round). The descriptive statistics of the five biodiversity
indicators are summarized in Table 15 for individual and species counts and their 0-1
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normalized indicators. Table 16 reports the descriptive statistics of the five indicators for
control and intervention fields for the two years of observations.

Table 15: Descriptive statistics of the five SHOWCASE core indicators in the Spanish EBA

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max
Counts

WBA 128 37.2 54.6 4.8 0 20.5 443
WBR 128 7.0 5.4 0.5 0 7 23
SpA 128 5.3 8.4 0.7 0 2.5 44
SpR 128 1.8 2.4 0.2 0 1 13
PlaR 64 12.2 5.6 0.7 0 11.5 26
Indicator (0-1)

Ind WBA 128 0.189 0.245 0.022 0.000 0.102 1.000
Ind WBR 128 0.382 0.304 0.027 0.000 0.341 1.000
Ind SpA 128 0.257 0.306 0.027 0.000 0.114 1.000
Ind SpR 128 0.237 0.282 0.025 0.000 0.154 1.000
Ind PlaR 64 0.489 0.256 0.032 0.000 0.458 1.000

Table 16: Descriptive statistics of the five SHOWCASE core indicators in the control and
intervention fields of the Spanish EBA

Indicator Treatment  Means N Std.Dev. Std.Err.  Min Median  Max
Ind WBA Control 0.070 64 0.136 0.017 0.000 0.034 0.959
intervention 0308 64 0271 0034 0000 0213  1.000
AlGroups 0189 128 0245 0022 0000 0102  1.000
Ind WER Control 0.196 64 0.225 0028 0000 0167  0.882
Intervention 0568 64 0.256  0.032 0000 0588  1.000
All Groups 0.382 128 0.304 0.027 0.000 0.341 1.000
Ind SpA Control 0210 64 0290 0036 0000 0067  1.000
intervention 0305 64 0.316  0.040 0000 0200  1.000
All Groups 0.257 128 0.306 0.027 0.000 0.114 1.000
Ind SpR Control 0.198 66 0.286 0.035 0.000 0.000 1.000
intervention 0276 66 0276 0034 0000 0200  1.000
All Groups 0.237 132 0.282 0.025 0.000 0.154 1.000
Ind PlaR Control 0.399 32 0.282  0.050  0.000  0.388  0.950
intervention 0579 32 0191 0034 0300 0571  1.000
AllGroups 0489 64 0.256  0.032 0000 0458  1.000

Statistically significant differences (p< 0.05) in indicator mean values were detected for WBA,
WBR and PlaR indicators, but not for SpA and SpR indicators, even though the mean values
observed for the control fields were lower than those observed for the intervention fields. Mean
indicator values for the second sampling round were somewhat lower than in the first round in
both control and intervention fields for WBA, WBR SpA and PlaR, while in the intervention
fields a non-significant increase was observed only for SpR. Over the two years of
observations, the mean values of the indicators showed an increase which was always more
evident in the intervention fields, but this was statistically significant only for WBA in the
intervention fields.
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As similar trends in terms of responses to biodiversity management intervention and temporal
dynamics were observed for the indicators of the Portuguese EBA and given the strong
similarities of the agricultural systems considered in the two EBAs, i.e. intensive fruit orchards
in Andalucia and intensive olive orchards in Alentejo, and the lack of statistically significant
differences in the mean indicators values from the two data sets in terms of responses to
management, rounds and year of sampling, a single dataset was used to calibrate more robust
spatiotemporal models for upscaling effects from the field to landscape scale. These analyses
are potentially generalizable to similar perennial systems in the south Iberian peninsula. The
descriptive statistics for the ES-PT joint dataset are reported in Tables 17 and 18.

Table 17: Descriptive statistics of the five SHOWCASE core indicators for the ES-PT combined
dataset

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max
Counts

WBA 168 33.1 49.5 3.8 0 17 443
WBR 168 7.6 6.4 0.5 0 42
SpA 191 11.5 19.6 14 0 170
SPR 191 2.2 2.8 0.2 0 15
PlaR 127 20.8 10.5 0.9 1 20 43
Indicator (0-1)

Ind WBA 168 0.195 0.251 0.019 0.000 0.100 1.000
Ind WBR 168 0.362 0.298 0.023 0.000 0.294 1.000
Ind SpA 191 0.262 0.292 0.021 0.000 0.136 1.000
Ind SpR 191 0.265 0.288 0.021 0.000 0.200 1.000
Ind PlaR 127 0.524 0.261 0.023 0.000 0.500 1.000

Table 18: Descriptive statistics of the five SHOWCASE core indicators in the control and
intervention fields of the Spanish and Portuguese EBAs

Indicator Treatment  Meaps N Std.Dev. Std. Err. Min Median Max
Ind WBA Control 0.065 84 0.120 0.013 0.000 0.039 0.959
Intervention 0.325 84 0.280 0.031 0.000 0.232 1.000
All Groups 0.195 168 0.251 0.019 0.000 0.100 1.000
Ind WBR Control 0.179 84 0.204 0.022 0.000 0.143 0.882
Intervention 0.544 84 0.264 0.029 0.000 0.568 1.000
All Groups 0.362 168 0.298 0.023 0.000 0.294 1.000
Ind SpA Control 0.203 96 0.258 0.026 0.000 0.088 1.000
Intervention 0.322 95 0.313 0.032 0.000 0.222 1.000
All Groups 0.262 191 0.292 0.021 0.000 0.136 1.000
Ind SpR Control 0.221 98 0.289 0.029 0.000 0.101 1.000
Intervention 0.311 97 0.281 0.029 0.000 0.250 1.000
All Groups 0.265 195 0.288 0.021 0.000 0.200 1.000
Ind PlaR Control 0.440 64 0.267 0.033 0.000 0.450 0.950
Intervention 0.610 63 0.227 0.029 0.050 0.625 1.000

All Groups 0.524 127 0.261 0.023 0.000 0.500 1.000
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In the joint dataset for all indicators, mean SpA and SpR for the intervention fields were
significantly higher (p <0.05) than the means observed for the control fields.

The assessment of the relevance of each single predictor from the RF is presented in Table
19 and in Figures 21 and 22.

Table 19: Relevance of RF predictors for the five biodiversity indicators in term of node purity;
colors highlight the most relevant predictors (orange > brown >light brown)

Predictors WBA Indicator WBR Indicator SpA Indicator SpRIndicator PlaRIndicator
NodePurity Rel. % NodePurity Rel. % NodePurity Rel. % NodePurity Rel. % NodePurity Rel. %
dummy_treat 0.099 1.44% 0.130 1.26% 0.078 0.69% 0.077 0.80% 0.053 0.95%
dummy_year 0.149 2.17% 0.071 0.69% 0.131 1.17% 0.078 0.82% 0.128 2.31%
dummy_round 0.022 0.32% 0.065 0.63% 0.123 1.09% 0.088 0.92%
swf_prox 0.247 3.62% 0.358 3.47% 0.490 4.36% 0.358 3.73% 0.172 3.11%
road_prox 0.318 4.65% 0.309 3.00% 0.370 3.29% 0.340 3.53% 0.205 3.70%
aspect 0.316 4.62% 0.479 4.65% 0.405 3.60% 0.368 3.82% 0.238 4.30%
elevation 0.231 3.38% 0.293 2.85% 0.484 4.30% 0.342 3.55% 0.382 6.89%
slope 0.206 3.01% 0.373 3.63% 0.613 5.44% 0.324 3.37% 0.138 2.49%
catchslope 0.219 3.20% 0.356 3.46% 0.294 2.61% 0.218 2.27% 0.189 3.41%
catcharea 0.254 3.71% 0.578 5.62% 0.520 4.62% 0.499 5.19% 0.248 4.47%
modcatchar 0.229 3.34% 0.517 5.02% 0.471 4.18% 0.316 3.29% 0.256 4.61%
twi 0.264 3.86% 0.505 4.91% 0.388 3.45% 0.305 3.17% 0.446 8.05%
valleydept 0.219 3.20% 0.305 2.97% 0.512 4.55% 0.497 5.17% 0.250 4.50%
bi 0.441 6.44% 0.516 5.02% 0.492 4.37% 0.352 3.66% 0.193 3.48%
blue 0.220 3.21% 0.358 3.48% 0.546 4.85% 0.518 5.39% 0.202 3.65%
green 0.222 3.24% 0.397 3.85% 0.401 3.56% 0.390 4.05% 0.237 4.28%
ir 0.293 4.28% 0.408 3.97% 0.511 4.54% 0.339 3.53% 0.238 4.28%
irm 0.286 4.17% 0.430 4.17% 0.448 3.98% 0.327 3.40% 0.268 4.84%
ndbsi 0.438 6.40% 0.479 4.65% 0.398 3.53% 0.384 4.00% 0.205 3.69%
ndsi 0.306 4.47% 0.454 4.42% 0.440 3.91% 0.389 4.04% 0.237 4.28%
navi 0.316 4.61% 0.447 4.34% 0.550 4.89% 0.339 3.53% 0.237 4.27%
red 0.244 3.57% 0.391 3.80% 0.437 3.88% 0.482 5.02% 0.148 2.66%
sosa 0.268 3.91% 0.435 4.23% 0.417 3.70% 0.505 5.25% 0.150 2.70%
sosil 0.261 3.81% 0.360 3.50% 0.385 3.42% 0.425 4.42% 0.157 2.83%
s0si2 0.264 3.85% 0.461 4.48% 0.520 4.62% 0.345 3.59% 0.204 3.67%
s0si3 0.234 3.42% 0.419 4.07% 0.390 3.47% 0.507 5.27% 0.174 3.15%
swir 0.280 4.09% 0.398 3.87% 0.443 3.94% 0.502 5.22% 0.191 3.44%
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Figure 21. RF variable contribution plots for WBA (left) and, WBR (right) indicators for the

Spanish and Portuguese EBA’s.
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Figure 22. RF variable contribution plots for SpA (top left), SpR (top right) and PlaR (bottom
center) indicators for the Spanish and Portuguese EBA’s.

Contrarily to what was suggested by field observations, treatment dummy variables appeared
not to be relevant contributors to the RF predictions for all the indicators, differently from terrain
attributes and RSI which, in different combinations for the selected indicators, played a major
role. For example, topographic wetness index and elevation were the most relevant predictors
for PlaR followed by reflectance in the near-infrared band. The distance from the road network
was a major determinant of WBA, while in the case of SpA, the distance from small woody
features had medium predictive power. Bare soil-related RSl (e.g., Bl and NDBSI) had strongly
predicted both WBA and WBR, while vegetation index (NDVI) affected WBR, WBA and SpA
with increasing predictive power.

The MLR coefficients for the normalized biodiversity indicators are summarized in Table 20,
and from their statistical significance, it appears that treatment (dummy variable) is a
statistically significant predictor for WBA, WBR and PlaR and that the stepwise combined
approach included it also for SpA and SpR. Overall, there is a good agreement in terms of the
predictors identified via stepwise MLR and the relevance of predictors as assessed via the RF
algorithms. Nevertheless, for all indicators, the performance evaluated in terms of error indices
(Table 21) highlights that MLR returns smaller calibration errors and provide higher agreement
indices between observed and estimated indicator values (Figure 23). Only for the PlaR
indicator the differences in the error indices are closer and of the same order of magnitude,
but in this case, MLRs perform better than RF.
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Table 20: Coefficients of the MLRs calibrated for the normalized biodiversity indicators;
significant coefficients in red (p <0.05) and blue (p>0.10)

Predictor WBA WBR SpA SpR PlaR
Intercept 1.953610 0.967043 1.724635 0.324924 -0.047122
Dummy Treat 0.139537 0.322600 -0.026903 0.014897 0.093101
Dummy Round -0.088980 -0.352393 -0.092180 -0.101861

Dummy Year 0.175778 -0.056377 0.178538 0.228596
Roads prox -0.000388 -0.000249 -0.000177
SWF prox 0.000145

Aspect -0.000255 -0.000613

Elevation -0.000599 -0.000421 0.001589
Catch. Area 0.000004 0.000006

CatchSlope 3.094585 -1.720080

Mod. Catch. Area 0.000001 0.000001 0.000003

Wi 0.083604 -0.179431

Valley Depth -0.000907 -0.001066 0.001642 0.001966 0.001427
BI -6.709545 -3.000944 -0.836076

blue -0.001305

green -0.003600

IR 0.000025 0.000290
IRn 0.000513 -0.000215
NDBSI -0.885838

NDSI 3.019846

NDVI -1.129670

red -0.000058

SOSA 0.002370

S0SI2 0.000044 0.000941

SOSI3 0.000010

Table 21: Calibration error indices for MLR and RF predictive model for the five biodiversity
indicators

Error WBA Indicator WBR Indicator SpA indicator SpR Indicator PlaR Indicator
indices RF MLR RF MLR RF MLR RF MLR RF MLR
ME -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00 0.01 0.00
AE 0.18 0.10 0.24 0.15 0.24 0.12 0.24 0.13 0.18 0.14
SE 0.25 0.02 0.29 0.19 0.30 0.15 0.29 0.16 0.23 0.17
R2 0.03 0.49 0.07 0.52 0.02 0.51 0.03 0.45 0.19 0.43
MSR 0.06 0.02 0.08 0.04 0.09 0.02 0.08 0.03 0.05 0.03
oA 0.19 0.78 0.27 0.81 0.16 0.79 0.07 0.77 0.48 0.75

The MLR models were then used to assess and map the five biodiversity indicators over the
entire agricultural land area occupied by permanent crops in the Spanish and Portuguese
CSAs. Based on the resulting raster maps (resolution 10 m), raster statistics were calculated
for each map to assess the average relative changes with respect to the baseline situation
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(year 1, control) and for each round the relative changes from the treatment implementation
over the whole target area to quantify the potential impact of the biodiversity management
practice implemented in the EBA.
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Figure 23: Calibration error indices for MLR and RF predictive model for the five biodiversity
indicators

Table 22 reports the descriptive statistics of the WBA indicator estimates over the whole target
area (43,315 ha). The results highlight a positive trend with respect to the 2022 baseline
(control), with only the control at round 2 showing a -42% reduction in the average indicator
value, very likely due to the hotter and dryer climate conditions. The increase due to the
intervention with respect to the control was particularly evident in the first year, where values
for the control were particularly low, with increases above 100 and 200% in the first and the
second round respectively, while in the second year they ranged between 42 and 25%. This
is probably due to the persisting drought conditions also in 2023. The maps underpinning the
statistics presented in the table are shown in Figure 24.

Table 22: WBA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std. Dev. Min. Max. Relchange baseline  RelChange T

WBA 2022 r1 treatiszero 0.089 0.084 0.072 0.000 1.000 -

WBA 2022 r1 treatisone 0.221 0.224 0.085 0.000 1.000 1.47 1.47
WBA 2022 r2 treatiszero 0.052 0.038 0.055 0.000 0.977 -0.42

WBA 2022 r2 treatisone 0.175 0.178 0.076 0.000 1.000 0.96 2.37
WBA 2023 r1 treatiszero 0.291 0.294 0.080 0.000 1.000 2.25

WBA 2023 r1 treatisone 0.413 0.416 0.077 0.000 0.959 3.62 0.42
WBA 2023 r2 treatiszero 0.219 0.221 0.076 0.000 1.000 1.45

WBA 2023 r2 treatisone 0.274 0.276 0.059 0.000 0.765 2.06 0.25

Average changes 1.63 1.13
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Figure 24: Predicted WBA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Figure 25: Predicted WBR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Table 23: WBR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Rel change baseline Rel Change T

WBR 2022 r1 treatiszero 0.411 0.411 0.159 0.000 1.000 -

WBR 2022 r1 treatisone 0.729 0.734 0.151 0.000 1.000 0.78 0.78
WBR 2022 r2 treatiszero 0.120 0.101 0.120 0.000 1.000 -0.71

WBR 2022 r2 treatisone 0.425 0.423 0.139 0.000 1.000 0.03 2.55
WBR 2023 r1 treatiszero 0.434  0.432 0.151 0.000 1.000 0.06

WBR 2023 r1 treatisone 0.751 0.755 0.141 0.000 1.000 0.83 0.73
WBR 2023 r2 treatiszero 0.107 0.081 0.120 0.000 1.000 -0.74

WBR 2023 r2 treatisone 0.408 0.404 0.141 0.000 1.000 -0.01 2.81
Average changes 0.03 1.72

The maps in Figure 25 illustrate the results of the spatiotemporal modelling of the WBR
indicator for the permanent crops in the Spanish CSA, and Table 23 presents a synthesis of
the descriptive statistics of the indicator estimates for the whole target area. The results
highlight a lack of a regular trend with respect to the 2022 baseline (control), with the control
at round 2 showing a -71 and -74% reduction in the average indicator value in 2022 and 2023
respectively. A negative trend with respect to the baseline value was also observed for round
2 in the intervention fields, but in this case the reduction was only -1%. The increase due to
the intervention with respect to the control was evident in both years with very similar values
in both rounds of the two years of observations, but the relative increases observed in the
second rounds were about four times higher than those observed in the first rounds.

Table 24 reports the descriptive statistics of the SpA indicator estimates over the whole target
area. The results highlight a consistently negative trend with respect to the 2022 baseline
(control), with a stronger decrease in the indicator mean value in the second round of 2023 (-
89%). The decrease in spider abundance due to the intervention with respect to the control
was evident in the first year, with decreases equal to -10 and -13% in the first and the second
round respectively, while in the second year a +8% increase was observed in the first round,
followed by a -3% decrease in the second. The maps underlying the descriptive statistics
presented in Table 24 are shown in Figure 26.

Table 24: SpA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Relchange baseline  RelChange T

SpA_2022_r1_treatiszero 0.229 0.217 0.169 0.000 1.000 -

SpA_2022_r1_treatisone 0.206 0.190 0.164 0.000 1.000 -0.10 -0.10
SpA_2022_r2_treatiszero 0.148 0.123 0.142 0.000 1.000 -0.36

SpA_2022_r2_treatisone 0.128 0.096 0.135 0.000 1.000 -0.44 -0.13
SpA_2023_r1_treatiszero 0.190 0.191 0.087 0.000 0.494 -0.17
SpA_2023_r1_treatisone 0.206 0.206 0.101 0.000 0.574 -0.10 0.08
SpA_2023_r2_treatiszero 0.026 0.026 0.017 0.000 0.104 -0.89

SpA_2023_r2_treatisone 0.025 0.025 0.018 0.000 0.112 -0.89 -0.03

Average changes -0.42 -0.05
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Figure 26: Predicted SpA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Figure 27: Predicted SpR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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The eight maps in Figure 27 depict the outcomes of the spatiotemporal modelling of the SpR
indicator for the permanent crops in the Spanish CSA, and Table 25 synthesizes the
descriptive statistics of the indicator estimates for the whole target area. The results highlight
in both years a reduction with respect to the baseline in the second rounds for both control
and intervention fields, which was slightly more evident in 2023. The relative change due to
the intervention with respect to the control was always positive in both years with very similar
values in both rounds and in the two years of observations, and equal to 5% for the first rounds
and between 7 and 8% for the second.

Table 25: SpR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Rel change baseline  RelChange T

SpR_2022_r1_treatiszero 0.277 0.272 0.137 0.000 1.000 -

SpR_2022_r1_treatisone 0.292 0.287 0.137 0.000 1.000 0.05 0.05
SpR_2022_r2_treatiszero 0.188 0.181 0.129 0.000 1.000 -0.32

SpR_2022_r2_treatisone 0.202 0.196 0.130 0.000 1.000 -0.27 0.07
SpR_2023_r1_treatiszero 0.282 0.278 0.133 0.000 1.000 0.02

SpR_2023_r1_treatisone 0.297 0.293 0.133 0.000 1.000 0.07 0.05
SpR_2023_r2_treatiszero 0.165 0.155 0.126 0.000 1.000 -0.41

SpR_2023 r2_treatisone 0.178 0.170 0.128 0.000 1.000 -0.36 0.08
Average changes -0.17 0.07

The results for PlaR indicators are summarized in terms of descriptive statistics for the raster
maps in Table 26. The implementation of biodiversity management results in an increase of
the average value of the indicator at each round of the two years of observations, with an
increase of ca. 30% for the two rounds in 2022, and a smaller increase of 17% for the two
rounds of 2023. The overall trend with respect to the baseline was always positive, with the
major gains detected in the intervention fields in the second year. The eight raster maps at 10
m resolution underpinning the figures reported in Table 26 are shown in Figure 28.

Table 26: PlaR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Rel change baseline  RelChange T

PlaR 2022 _r1_treatiszero 0.300 0.284 0.068 0.000 0.837 -

PlaR_2022_r1_treatisone 0.393 0.377 0.068 0.012 0.930 0.31 0.31
PlaR_2022_r2_treatiszero 0.333 0.317 0.068 0.000 0.866 0.11
PlaR_2022_r2_treatisone 0.426 0.410 0.068 0.006 0.959 0.42 0.28
PlaR_2023 r1_treatiszero 0.546 0.531 0.069 0.000 1.000 0.82

PlaR_2023 r1_treatisone 0.639 0.624 0.069 0.081 1.000 1.13 0.17
PlaR_2023 _r2_treatiszero 0.562 0.547 0.068 0.038 1.000 0.87

PlaR_2023 _r2_treatisone 0.655 0.640 0.068 0.132 1.000 1.18 0.17

Average changes 0.69 0.23
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Figure 28: Predicted PlaR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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From the sum of the five biodiversity indicators for each round of sampling and for the two
years of field observations, combined biodiversity indices were calculated, 0-1 normalized and
mapped, as shown in Figure 29. The rasters were used as the basis to calculate zonal
statistics for the target land use area, which are presented in Table 27.

Table 27: BioDiv indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Rel change baseline  RelChange T

BioDiv_2022_r1_treatiszero 0.310 0.300 0.111 0.000 1.000 -

BioDiv_2022_r1_treatisone 0.406 0.398 0.108 0.000 1.000 0.31 0.31
BioDiv_2022 _r2_treatiszero 0.212 0.198 0.089 0.000 1.000 -0.31
BioDiv_2022_r2_treatisone 0.290 0.281 0.093 0.000 1.000 -0.06 0.36
BioDiv_2023 r1_treatiszero 0.354 0.349 0.103 0.000 1.000 0.14
BioDiv_2023_r1_treatisone 0.474 0.469 0.104 0.000 1.000 0.53 0.34
BioDiv_2023 _r2_treatiszero 0.246 0.236 0.089 0.000 1.000 -0.21
BioDiv_2023_r2_treatisone 0.334 0.327 0.093 0.000 1.000 0.08 0.36
Average changes 0.07 0.34

The overall average biodiversity gain resulting from the implementation of the biodiversity
friendly management practice was equal to 34%, with a fairly constant increase in the two
rounds of the two years between 31 and 36%. The overall trend with respect to the baseline
was characterized by a marked decrease in the control fields in the second round in both
years, equal to -31 and -21% in 2022 and 2023 respectively. The changes in the intervention
fields with respect to the baseline were positive and remarkable for the first round, while for
the second the change was negative in 2022 with a -6% decrease and slightly positive in 2023
with an 8% increase.
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Figure 29: Predicted BioDiv indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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The overall joint trend of all the six indicators, with their synergies and trade-offs, is visually
summarized in the radar graph depicted in Figure 31. The indicators values shown in the

Figure are averaged over the two rounds of each year.
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Figure 31: Radar graph of the round-averaged indicators for the control and the intervention in

the two years of observation.
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3.3 Portuguese EBA

The CSA encompassing the Portuguese EBA fields comprises five municipalities in southern
Portugal in the Alentejo Central (Evora and Portel) and Baixo Alentejo (Beja, Cuba and
Vidigueira) provinces. The areas of the five municipalities sum up to a total of ca 3,500 km2,
11.9% of which are occupied by permanent tree orchards for a total of 56,785 ha. Of this, a
share of 74.5% is occupied by olive groves (42,295 ha), 14.3% by vineyards (8,111 ha), and
11.2% by fruit orchards (6,379 ha). The area has an elevation ranging between 34 and 420
m, with a gentle hilly morphology and uniform peneplains, and with few reliefs that generally
follow the Hercynian Orogeny geologic main direction NW-SE. The area is characterized by
the presence of natural and semi-natural vegetation in the form of extensive savanna-like
forests mainly composed of cork (Quercus suber L.) and holm-oak (Q. rotundifolia L.) trees in
varying densities, the characteristic Portuguese montado, which is considered a High Nature
Value Farming System according to EEA. Within the CSA there are three Natura 2000 sites
plus parts of four additional Natura 2000 sites at the NW and S borders of the area, for a total
of 46,078.5 ha.
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Figure 32. Geographical location and elevation of the Portuguese CSA with the locations of
seven Natura2000 sites.

The proximity of the Alqueva reservoir to the east (surface area of 250 km2, capacity of 4,150
million m3) affects the microclimate of the area and provides a great source of water to regional
agriculture, with 53.26% of olive groves benefitting from irrigation infrastructures, and the
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remaining 46.74% being rainfed (Rodriguez-Cohard et al. 2019; Fraga et al. 2020). To
respond to market needs and societal demand, olive groves are undergoing a gradual
intensification process to maximize their yields. Olive intensification is directly associated with
an increase in tree density (Pastor et al. 2007) with highly intensive orchards having up to
2000 trees ha™" and intensive groves 200 - 800 trees ha™'. These together account for ca. 64%
of the olive-growing area in Alentejo and are responsible for 75% of olive production (INE
2022a). Intensive groves have highly negative environmental impacts, mostly related to the
fact that in most of them the herbaceous under-cover is entirely removed, resulting in a high
risk of soil erosion and biodiversity loss, but also due to the high concentration of nitrates,
phosphates, and potassium (Caraveli 2000; de Graaf et al. 2010; Guzman et al., 2022;
Rodriguez Sousa et al., 2022).

Following the SHOWCASE sampling protocol, the core indicators data were collected in two
rounds (April and May) in 2022 and 2023 from twelve control fields and twelve intervention
fields. Plant richness was sampled twice a year and in April 2023 (first round). The descriptive
statistics of the five biodiversity indicators are summarized in Table 28 for individual and
species counts and their 0-1 normalized indicators. Table 29 reports the descriptive statistics
of the five indicators for the control and intervention fields for two years of observations.

Table 28: Descriptive statistics of the five SHOWCASE core indicators

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max
Counts 40 20.1 23.5 3.7 0 9.5 103
WBA 40 9.5 8.6 1.4 0 6 42
WBR 63 24.2 28.1 3.5 0 15 170
SpA 63 3.2 3.3 0.4 0 2 15
SPR 63 29.5 6.4 0.8 7 29 43
PlaR

Indicator (0-1) 40 0.214 0.274 0.043 0.000 0.089 1.000
Ind WBA 40 0.295 0.270 0.043 0.000 0.190 1.000
Ind WBR 63 0.273 0.262 0.033 0.000 0.189 1.000
Ind SpA 63 0.325 0.293 0.037 0.000 0.250 1.000
Ind SpR 63 0.560 0.264 0.033 0.000 0.600 1.000
Ind PlaR 40 20.1 23.5 3.7 0 9.5 103

Statistically significant differences (p< 0.05) in indicator mean values were detected for WBA,
WBR, SpA, and PlaR indicators, but not for the SpR indicator, even though the mean values
observed for the control fields were slightly lower than those observed for the intervention
fields. Mean indicator values for the second sampling round are somewhat lower than in the
first round in both control and intervention fields for WBR, SpA, SpR, and PlaR, while in the
intervention fields a non-significant increase is observed only for WBA. For the second year
of observations, biodiversity indicator data from the Portuguese EBA are available at the
moment of writing this report only for spiders. The mean values of both SpA and SpR
indicators show a moderate increase in the second year of observations which is more evident
in the intervention fields for the SpA indicator.
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Table 29: Descriptive statistics of the five SHOWCASE core indicators in the control and
intervention fields of the Portuguese EBA

Indicator Treatment  Means N Std.Dev. Std.Err.  Min  Median  Max
nalVEA Control 0.051 20 0.042 0009  0.000 0044  0.173
Intervention 0.378 20 0.311 0.069 0.029 0.276 1.000
All Groups 0.214 40 0.274 0.043 0.000 0.089 1.000
ind WBR Control 0.123 20 0.094 0021 0000 0134  0.286
Intervention 0.467 20 0.280 0.063 0.095 0.428 1.000
AlLGroups 0.295 40 0.270 0.043 0.000 0.190 1.000
Ind SpA Control 0.189 32 0179 0032  0.000 0132 0718
Intervention 0.359 31 0.307 0.055 0.000 0.296 1.000
All Groups 0.273 63 0.262 0.033 0.000 0.189 1.000
Ind SPR Control 0.268 32 0295  0.052  0.000 0214  1.000
Intervention 0.385 31 0.284 0.051 0.000 0.286 1.000
AlLGroups 0.325 63 0.293 0.037 0.000 0.250 1.000
nUELR Control 0.481 32 0.248 0044  0.000 0500  0.933
Intervention 0.643 31 0.259 0.047 0.050 0.722 1.000
All Groups 0.560 63 0.264 0.033 0.000 0.600 1.000

As the same trends in terms of responses to biodiversity management intervention and
temporal dynamics were observed for the indicators of the Spanish EBA, and given the strong
similarities of the agricultural systems considered in the two EBAs, i.e. intensive fruit orchards
in Andalucia and intensive olive orchards in Alentejo, it was decided to use a single data set
to calibrate more robust spatiotemporal models for upscaling evidences from the field to
landscape scale, potentially applicable to same permanent systems in the south Iberian
peninsula. The descriptive statistics for the ES-PT joint dataset (see section 3.2) are reported
in Table 17, and the results of model calibration for both RF and MLR models are presented
in the previous subsection 3.2 on the Spanish EBA.

Table 30: WBA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Rel change baseline Rel Change T
WBA 2022 r1 treatiszero 0.076 0.061 0.074 0.000 0.726 -

WBA 2022 r1 treatisone 0.201 0.200 0.093 0.000 0.865 1.66 1.66
WBA 2022 r2 treatiszero 0.016 0.000 0.036 0.000 0.468 -0.78

WBA 2022 r2 treatisone 0.095 0.086 0.079 0.000 0.607 0.25 4.80
WBA 2023 r1 treatiszero 0.222 0.219 0.096 0.000 0.822 1.93

WBA 2023 r1 treatisone 0.362 0.359 0.097 0.000 0.962 3.77 0.63
WBA 2023 r2 treatiszero 0.239 0.227 0.131 0.000 1.000 2.15

WBA 2023 r2 treatisone 0.377 0.366 0.134 0.000 1.000 3.97 0.58
Average changes 1.85 1.91

Table 30 summarizes the raster statistics for the WBA indicator estimates over the whole
target area (56,780 ha). The results highlight a positive trend with respect to the 2022 baseline
(control), with only the control fields at round 2 showing a -78% reduction in the average
indicator value. The relative increase due to the intervention with respect to the control was
particularly evident in the first year, where values for the control fields were particularly low,
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with increase above 160 and ca. 480% in the first and the second round respectively, while in
the second year they ranged between 63 and 58%. The maps underpinning the statistics
presented in the table are shown in Figure 33.
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Figure 33: Predicted WBA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Figure 34 illustrates the spatial distribution of the WBR indicator for control and intervention
scenarios during the two rounds in the two years. Table 31 reports the raster statistics for each
map and summarizes the relative changes with respect to the baseline and to the control of

each round.

Table 31: WBR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat WBR mean median  stdev min max Relchange baseline  Rel Change T
WBR 2022 r1 treatiszero 0.258 0.246 0.176  0.000 1.000 -

WBR 2022 r1 treatisone 0.570 0.568 0.185 0.000 1.000 1.21 1.21
WBR 2022 r2 treatiszero 0.023 0.000 0.072 0.000 1.000 -0.91

WBR 2022 r2 treatisone 0.187 0.166 0.162 0.000 1.000 -0.27 7.27
WBR 2023 r1 treatiszero 0.190 0.169 0.162 0.000 1.000 -0.26

WBR 2023 r1 treatisone 0.496 0.492 0.184 0.000 1.000 0.92 1.60
WBR 2023 r2 treatiszero 0.337 0.305 0.264 0.000 1.000 0.31

WBR 2023 r2 treatisone 0.619 0.627 0.261 0.000 1.000 1.41 0.84
Average changes 0.34 2.73
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Figure 34: Predicted WBR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

The relative increase due to the intervention with respect to the control was particularly evident
in the first year, in which values for the control fields were low in the first round and extremely
low in the second, resulting in an increase above 120 and 720% in the first and the second
round respectively. In the second year the increases were equal to 160 and 84% for the first
and the second rounds, respectively. With respect to the baseline, the changes were negative
in both control (-91%) and intervention (-27%) fields in the second round of the first year, and
in the control fields of the first round in 2023 (-26%).

Differently from the wild bee indicators, the intervention fields were characterized by
systematically negative changes with respect to control within the same round. The decrease
was slightly higher in the second rounds of both years, with -16 and -15 % decreases
respectively in 2022 and 2023, while the corresponding figures for the first rounds are equal
to -11 and -12%. Similarly, the overall average trend with respect to the baseline was negative
for SpA for the second round of 2022 and 2023, with increases equal to +26 and 10% for the
first round of 2023 for the control and intervention treatment, respectively. Figure 35 illustrates
the spatial distribution maps of the SpA indicator for control and intervention scenarios during
the two rounds in the two years.
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Table 32: SpA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat SpA mean median stdev min max Rel change baseline RelChange T
SpA 2022 r1 treatiszero 0.218 0.218 0.154 0.000 1.000 -
SpA 2022 r1 treatisone 0.195 0.191 0.148 0.000 1.000 -0.11 -0.11
SpA 2022 r2 treatiszero 0.109 0.080 0.115 0.000 0.902 -0.50
SpA 2022 r2 treatisone 0.091 0.053 0.107 0.000 0.875 -0.58 -0.16
SpA 2023 r1 treatiszero 0.275 0.277 0.141 0.000 0.847 0.26
SpA 2023 r1 treatisone 0.241 0.242 0.133 0.000 0.807 0.10 -0.12
SpA 2023 r2 treatiszero 0.173 0.163 0.131 0.000 0.848 -0.21
SpA 2023 r2 treatisone 0.146 0.134 0.120 0.000 0.807 -0.33 -0.15
Average changes -0.19 -0.14
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Figure 35: Predicted SpA indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

In the case of the SpR indicators, the relative changes with respect to the control were always
positive and were very similar between rounds and years, ranging from 4 to 7%. The changes
with respect to the 2022 control reference baseline were negative for the second round of
2022 and for the two rounds in 2023. The magnitude of relative decrease was greater in the
second rounds of both years, with control fields characterized by a slightly higher decrease
with respect to the intervention fields. On average an overall decrease of -25% in the indicator
values was observed for the whole target area.
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Table 33: SpR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median  Std. Dev. Min. Max. Rel change baseline Rel Change T
SpR_2022_r1_treatiszero 0.348 0.349 0.137 0.000 1.000 -
SpR_2022_r1_treatisone 0.363 0.363 0.137 0.000 1.000 0.04 0.04
SpR_2022_r2_treatiszero 0.217 0.215 0.128 0.000 1.000 -0.38
SpR_2022_r2_treatisone 0.232 0.230 0.130 0.000 1.000 -0.33 0.07
SpR_2023_r1_treatiszero 0.311 0.310 0.132 0.000 1.000 -0.11
SpR_2023 r1_treatisone 0.325 0.325 0.132 0.000 1.000 -0.07 0.05
SpR_2023_r2_treatiszero 0.183 0.177 0.124 0.000 1.000 -0.48
SpR_2023_r2_treatisone 0.196 0.192 0.126 0.000 1.000 -0.44 0.07
Average changes -0.25 0.06
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Figure 36: Predicted SpR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom

row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Figure 36 illustrates the estimated spatial distribution of the SpR indicator values for the whole

target area in the two rounds for the two years of observations.

The eight raster maps at 10m resolution showing the spatial distribution of the PlaR indicator
are portrayed in Figure 37. The raster statistics summarised in Table 34 highlight a moderate
increase in the intervention fields with respect to the control ones, which was very similar in
the two rounds of the two years of observations, equal to 17% % in 2022 and to ca. 12% in
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2023. The relative changes with respect to the baseline were always positive, and while in the
first year they were only observed for the intervention fields, in the second year increases
above 40% were observed also for the control fields.

Figure 37: Predicted PlaR indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom

row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 34: PlaR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Rel change baseline Rel Change T

PlaR _2022_r1_treatiszero 0.540 0.533 0.109 0.040 1.000 -

PlaR_2022 _r1_treatisone 0.633 0.626 0.109 0.133 1.000 0.17 0.17
PlaR_2022_r2_treatiszero 0.544 0.537 0.110 0.023 1.000 0.01

PlaR_2022 _r2_treatisone 0.637 0.630 0.110 0.116 1.000 0.18 0.17
PlaR_2023_r1_treatiszero 0.763 0.757 0.105 0.247 1.000 0.41

PlaR_2023 r1_treatisone 0.853 0.850 0.100 0.340 1.000 0.58 0.12
PlaR_2023_r2_treatiszero 0.775 0.768 0.107 0.257 1.000 0.44

PlaR_2023_r2_treatisone 0.863 0.861 0.100 0.350 1.000 0.60 0.11
Average changes 0.34 0.14
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Figure 38: Predicted BioDiv indicator maps (res. 10 m) for round 1 (top row) and round 2 (bottom
row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Figure 38 shows the eight raster maps obtained by summing the five biodiversity indicators
for each round of sampling and for the two years of field observations and normalizing the
sum to have all estimated indicator values ranging from 0 to 1. The rasters were then used as
the basis to calculate the zonal statistics for the target land use area, which are presented in

Table 35.

Table 35: BioDiv indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Relchange baseline RelChangeT
BioDiv_2022_r1_treatiszero 0.337 0.333 0.120 0.000 1.000 -
BioDiv_2022_r1_treatisone 0.397 0.395 0.114 0.000 1.000 0.18 0.18
BioDiv_2022 _r2_treatiszero 0.322 0.315 0.122 0.000 1.000 -0.04
BioDiv_2022_r2_treatisone 0.352 0.341 0.127 0.000 1.000 0.04 0.09
BioDiv_2023 r1_treatiszero 0.333  0.327 0.112 0.000 1.000 -0.01
BioDiv_2023_r1_treatisone 0.396 0.394 0.111 0.000 1.000 0.17 0.19
BioDiv_2023_r2_treatiszero 0.368  0.358 0.140 0.000 1.000 0.09
BioDiv_2023_r2_treatisone 0.445 0.446 0.133 0.000 1.000 0.32 0.21
Average changes 0.11 0.17
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The overall average biodiversity gain resulting from the implementation of the biodiversity-
friendly management practice was equal to 17%, with an almost equal increase in the first
rounds of the two years between 18 and 19%. The increases during the second rounds of the
two years were however quite distinct, with a relative increase of ca 9% in 2022 and greater
than 20% in 2023. The overall trend in relation to the baseline was characterized by a slight
decrease in the control fields in the second round of 2022 and in the first round of 2023, equal
to -4 and -1% in 2022 and 2023, respectively. The changes in the intervention fields with
respect to the baseline were positive and very similar for the first rounds (18% in 2022, 17%
in 2023), while for the second the change was modest in 2022 with a 4% increase but much
higher in 2023 with a 32% increase.

All the evidence for the six indicators considered are summarized in the radar graph shown in
Figure 39, where the synergies and trade-offs between indicators can also be visually
appreciated along with the overall effect due to the biodiversity management implementation.

BioDiv 020 WBR

PlaR SpA

SpR

2022 C ==2023 C 2022 | =m—2023 |

Figure 39: Radar graph of the round-averaged indicators for the control and the intervention in
the two years of observation.
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3.4 Dutch EBA

The Dutch CSA is located at the southernmost tip of the Netherlands in the region of Zuid-
Limburg, the very south of the province of Limburg (Figure 40). South Limburg is characterized
by a varied relief, intensive agricultural lands and nature reserves in the middle of highly
urbanized areas, such as Maastricht in the northwest, and Heerlen in the northeast of the
CSA. The area is 368.5 km?and is located on a plateau of loess soils in which several small
rivers have eroded a range of valleys into the limestone substrate. The elevation ranges from
5to 322 m a.s.l. (average 80 m a.s.l.). Intensive arable farming and orchards dominate the
plateau and dairy farming dominates the valleys. Pastures are mostly intensive with mowing,
grazing and fertilization. Annual crops are mainly grains (wheat, barley), potatoes, corn and
sugar beet. Orchards are predominantly apples and pears, with a growing section of
vineyards. A significant proportion of the valleys furthermore consists of Natura 2000 areas as
the slopes, in particular, support species-rich calcareous grasslands. The Natura 2000 sites
sum up to 4073 ha, i.e. 11.1% of the total area.

Farming in the area consists of a mix of dairy, orchard and arable farming, which are all very
intensively managed. The target area for the upscaling of the field-based biodiversity
indicators is represented by arable lands, which cover ca 17,000 ha, i.e. 46.5% of the whole
area (Figure 40).

TN

Upscale area
. [ ambledand

Figure 40. Geographical location of the Dutch CSA.

The Dutch EBA focused on two different interventions in separate studies: (i) lupin (Lupinus
albus L. and Lupinus angustifolius L.) cultivation in arable fields (farmers financially supported
to grow lupin) and (ii) (combinations of) hedges and semi-natural grasslands next to winter
wheat. The biodiversity indicators data provided by the Dutch EBA partners for the
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spatiotemporal modeling and upscaling refers to the lupin experiment (in-field intervention).
The available data were collected in two rounds in May and June 2021, in May and June 2022,
and in May and July 2023. Not all the five biodiversity core indicators were collected at every
round and in every year: spider indicators data are available for the two rounds of 2022, plants
indicator data are available for the second rounds of 2021 and 2022, and wild bee indicators
data are available for the two rounds of 2021, 2022 and 2023. The number and location of
fields changed in the three years: in 2021 3 intervention and 3 control fields were sampled; in
2022 7 control and 7 intervention fields, and in 2023 3 control and 3 intervention fields.

The descriptive statistics of the five biodiversity indicators are summarized in Table 36 for
individual and species counts and their 0-1 normalized indicators.

Table 36: Descriptive statistics of the five SHOWCASE core indicators

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max
Counts

WBA 58 17 23 3 0 5.5 86
WBR 58 3 3 0 0 2 10
SpA 46 22 24 4 0 14 97
SpR 46 4 3 0 0 3 14
PlaR 39 8 4 1 1 8 22
Indicator (0-1)

Ind WBA 58 0.265 0.324 0.043 0.00 0.087 1.00
Ind WBR 58 0.262 0.283 0.037 0.00 0.200 1.00
Ind SpA 46 0.246 0.271 0.040 0.00 0.162 1.00
Ind SpR 46 0.330 0.270 0.040 0.00 0.268 1.00
Ind PlaR 39 0.493 0.270 0.043 0.00 0.429 1.00

Table 37 summarizes the descriptive statistics of the five normalized indicators for control and
intervention; statistically significant differences (p< 0.05) in indicator mean values were
detected for WBA and WBR indicators, with lower mean values observed for the control fields
(0.052) and significantly higher for the intervention fields (0.479). In the case of PlaR indicator
the mean value of the intervention field was higher (0.536) than that of the control fields
(0.453), while for the spider indicators the mean values for the intervention and control fields
were almost identical for both SpA (0.236 for control vs. 0.258 for intervention) and SpR (0.329
for control vs. 0.333 for intervention).

In terms of location along the transects in the fields, given the in-field intervention with lupin
the mean indicator values are higher in the field center than at the field margins for WBA
(0.256 vs. 0.186), PlaR (0.670 vs. 0.288), SpA (0.294 vs. 0.178) and SpR (0.352 vs. 0.297),
but not for WBR (0.226 vs. 0.356). Difference in indicator mean values in the two locations are
statistically significant (p<0.05) for WBA and PlaR. When considering the effects of the
biodiversity management intervention and location, the same trend was observed for SpA,
SpR and PlaR, with higher indicator mean values in the field center for both control and
intervention fields, and with statistically significant differences (p<0.05) in the case of PlaR
mean values at both locations. In the case of wild bee indicators, lower values of abundance
and richness were observed in the center for the control fields, while for the intervention fields
WBA is significantly higher at the field center, and WBR has very similar mean values in both
locations.
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Table 37: Descriptive statistics of the five SHOWCASE core indicators in the control and
intervention fields of the Dutch EBA

Indicator Treatment  Means N Std.Dev. Std.Er.  Min  Median  Max
Ind WBA Control 0.052 29 0.123 0023 0000  0.000  0.500
Intervention 0479 29 0.323 0.060 0.000 0.432 1.000
AllGroups ~ 0-265 58 0.324 0043 0000 0087  1.000
Ind WBR Control 0.104 29 0.219 0.041 0.000 0.000 1.000
intervention 0421 29 0.250 0046  0.000 0400  1.000
All Groups ~ 0-262 58 0.283 0.037 0.000 0.200 1.000
Ind SpA Control 0.236 25 0.303 0061 0000 0106  1.000
Intervention  0-258 21 0.234 0.051 0.000 0.180  0.851
AllGroups 0246 46 0271 0040 0000 0162  1.000
Ind SpR Control 0.329 25 0.298 0.060 0.000 0.286 1.000
intervention  0-330 21 0.241 0052 0000 0250  0.875
All Groups ~ 0-330 46 0.270 0.040 0.000 0.268 1.000
ind PlaR Control 0.453 20 0272 0061 0000 0417  1.000
Intervention  0-536 19 0.269 0.062 0.000 0.583 1.000
AllGroups 0493 39 0270 0043 0000 0429  1.000

Although not statistically significant, the mean indicator values for the second round are
consistently higher for both control and intervention fields for all the four biodiversity indicators
with two sampling rounds. Wild bee abundance and richness indicators increased between
2021 and 2022, and in 2023 remained constant in the intervention fields, while in the control
fields WBA slightly decreased and WBR increased, although not significantly in both cases. In
the two years 2021 and 2022, the vascular plant species indicator PlaR remained constant in
the control fields, while in the intervention fields there was a clear increase in 2022, although
not statistically significant.

The calibration of the predictive models and the assessment of estimation errors for both MLR
and RF models were performed over the Dutch EBA dataset adopting the same set of
predictors, which included also the terrain morphological attributes. Table 38 summarizes the
MLR coefficients for the normalized biodiversity indicators to upscale field observations to the
target land use over the entire CSA. The treatment dummy predictors are statistically
significant only for the wild bee indicators, while the effect of seasonality (i.e. sampling round)
was significant for both wild bee and spider indicators. The landscape structure variables
expressed in terms of distance from the road network and from small woody features were
significant predictors for almost all indicators.

Adopting the same set of predictors for each indicator, RF models were calibrated for each
indicator, providing also an assessment of the relevance of each predictor, expressed in term
of node purity, and of its relative values (Table 39). The contribution of each predictor is
graphically represented in Figure 41 for the five biodiversity indicators, with order of relevance
increasing along the Y axis. Distance from the road network ranked among the most relevant
predictors for WBA, SpR and PlaR, while distance from small woody features was moderately
relevant only for WBR. Elevation played a major role for both spider indicators, while slope
was relevant for the PlaR indicator. Among the RS, reflectance in the infra-red and in the near
infrared bands along with those in blue and the green bands ranked among the most relevant
for nearly all indicators.



70 | Page D2.7: Multiscale spatiotemporal modelling of biodiversity indicators

Table 38: Coefficients of the MLR calibrated for the normalized biodiversity indicators;
significant coefficients in red (p <0.05) and blue (p>0.10)

Predictors WBA WBR SpA SpR PlaR
Intercept -0.072897 0.051816 0.368848 -0.107650 -0.575951
Dummy Treat 0.109077 0.141194 0.011112 0.083860 0.045729
Dummy Round -0.112772 -0.153117 0.161375 0.173590

Dummy Year 1 -0.086327

Road prox 0.000693 -0.000148 0.003122
SWF prox -0.000299 -0.000771 -0.000368
Aspect 0.000917
CatchArea 0.00000034 -0.000003

CatchSlope -4.845689 -1.988216

Elevation -0.002039 -0.000943

wi -0.031668 0.046178

IR 0.000021 0.000050 -0.000096 0.000013

Irn 0.000203 0.000111
NDVI 0.211364 0.498197
SOSA 0.000046

S0SI2 -0.000038 -0.000026

Table 39: Relevance of RF predictors for the five biodiversity indicators in term of node purity;
colors highlight the most relevant predictors (orange > brown >light brown)

Predictors WBA Indicator WBR Indicator SpA Indicator SpRIndicator PlaR Indicator
Nodepurity Rel.% Nodepurity Rel.% Nodepurity Rel.% Nodepurity Rel.% Nodepurity Rel.%
dummy_treat 0482  3.75% 0.695 3.69% 0.009 0.30% 0.011 0.36% 0.009 0.38%
dummy_location 0.197 1.54% 0.097 0.52%
dummy_y1 0.043 0.33% 0.113 0.60%
dummy_y2 0.093 0.72% 0.105 0.56%
dummy_r1 0.294  2.29% 0.241 1.28% 0.041 1.40% 0.033 1.11%
dummy_r2 0.162  1.26% 0.149 0.79%
swf_prox 0.387  3.02% 0.751 3.99% 0.055 1.89% 0.082 2.77% 0.082 3.29%
road_prox 0.622 4.85% 0.473 2.51% 0.078 2.67% 0.143 4.86% 0.266 10.71%
aspect 0416  3.24% 0.898 4.77% 0.049 1.66% 0.052 1.77% 0.075 3.02%
elevation 0492 3.83% 0.690 3.67% 0.185 6.30% 0.189 6.39% 0.082 3.28%
slope 0.500 3.90% 0.647 3.44% 0.262 8.93% 0.136 4.61% 0.128 5.14%
catchslope 0413 3.22% 0.748 3.97% 0.167 5.72% 0.201 6.82% 0.074 2.95%
catcharea 0532 4.14% 0.662 3.52% 0.070 2.39% 0.085 2.87% 0.078 3.12%
modcatchar 0.501  3.90% 0.711 3.78% 0.081 2.77% 0.096 3.27% 0.082 3.30%
twi 0.373 291% 0.615 3.27% 0.113 3.86% 0.216 7.30% 0.089 3.57%
valleydepth 0472 3.68% 0.794 4.22% 0.141 4.80% 0.103 3.49% 0.074 2.99%
swir 0.428  3.34% 0.728 3.87% 0.054 1.83% 0.103 3.48% 0.090 3.63%
s0si3 0.522  4.07% 0.712 3.78% 0.120 4.11% 0.120 4.08% 0.074 2.99%
S0si2 0.488  3.80% 0.708 3.76% 0.098 3.36% 0.097 3.28% 0.127 5.12%
sosil 0.512  3.99% 0.735 3.91% 0.135 4.60% 0.113 3.82% 0.064 2.56%
sosa 0.446  3.48% 0.715 3.80% 0.136 4.65% 0.102 3.45% 0.057 2.28%
red 0.547 4.27% 0.750 3.98% 0.103 3.51% 0.118 3.99% 0.075 3.00%
ndvi 0491 3.82% 0.736 3.91% 0.135 4.60% 0.109 3.69% 0.119 4.77%
ndsi 0.393  3.06% 0.773 4.11% 0.048 1.64% 0.123 4.16% 0.086 3.45%
ndbsi 0.445  3.47% 0.646 3.43% 0.120 4.08% 0.118 3.99% 0.098 3.96%
im 0.553 4.31% 0.829 4.41% 0.155 5.29% 0.095 3.20% 0.182 7.32%
ir 0461 3.59% 0.748 3.97% 0.184 6.28% 0.098 3.33% 0.149 6.01%
green 0562 4.38% 0.771 4.10% 0.100 3.43% 0.108 3.65% 0.062 2.49%
blue 0.573  4.46% 0.866 4.60% 0.170 5.79% 0.154 5.23% 0.078 3.14%

bi 0435 3.39% 0.714 3.79% 0.121 4.14% 0.149 5.04% 0.188 7.55%
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Figure 41. RF variable contribution plots for WBA (top left), WBR (top right) for SpA (middle left),
SpR (middle right) and PlaR (bottom center) indicators.

The RF predictors ranking suggests that the dummy variables used to include the
implementation of biodiversity management as a possible covariate for upscaling field results
to the landscape scale, as well the impact of seasonality, are not relevant in the process of

training the regression trees of the RF.

The calibration error indices and the statistical measures of agreement between observed and
estimated indicator values are reported in Table 40, and graphically depicted in figure 42.



72 | Page D2.7: Multiscale spatiotemporal modelling of biodiversity indicators

Table 40: Calibration error indices for MLR and RF predictive model for the five biodiversity
indicators

Error WBA Indicator WBR Indicator SpA indicator SpR Indicator PlaR Indicator
indices MLR RF MLR RF MLR RF MLR RF MLR RF
ME -0.002 -0.010  0.000 -0.004 -0.004 -0.007 0.000 -0.009 0.000 -0.003
AE 0.074 0.154  0.127 0.211 0.081 0.174 0.152 0.227 0.139  0.215
MSE 0.009 0.047 0.023 0.069 0.012 0.059 0.035 0.077 0.033 0.067
RMSE 0.092 0.217 0.151 0.262 0.108 0.243 0.188 0.278 0.182  0.259
l0A 0.780 0.287 0.754 0.229 0927 0.533 0.694 0.138 0.821  0.301
R2 0.487 0.079 0411 0.052 0.769 0.191 0.361 0.011 0.534 0.070
1.000
0.800
0.600
0.400

0.000 I_I _Il I III _I | _I..I _II | Il| . I I- III _I I

MLR RF MLR RF MLR RF MLR RF MLR RF
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Figure 42: Calibration error indices for MLR and RF predictive model for the five biodiversity
indicators in the Dutch EBA

Again, as already observed in the other EBAs considered so far, the results suggest that MLR
models better describe the relationships between the target data and the predictor variables
compared to RF models.

The MLR models were used to assess and map the five biodiversity indicators over the entire
agricultural land area and raster statistics were calculated for each map to assess the average
relative changes with respect to the baseline situation (year 1, control), and for each round the
relative change due to the treatment implementation over the whole area. Although not
realistic, this assessment provides a quantitative, spatial explicit and time dynamic evaluation
of the potential impact of the biodiversity management practice implemented in the Dutch EBA.

The spatiotemporal dynamics of the WBA indicator in response to environmental and
anthropic drivers are presented in Figure 43; only results for 2022 and 2023 are shown.
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Figure 43: Predicted WBA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Table 41 reports the descriptive statistics of the WBA indicator estimates over the whole target
area (ca. 17,000 ha). Results highlight a positive trend with respect to the 2022 baseline
(control), with an increase greater than 100% in the intervention fields during round 2. The
increase due to the intervention with respect to the control was slightly more evident in the first
year, in which values for the control were somewhat lower, with increases equal to 70 and
43% in the first and the second round, respectively, while in the second year they were 65 and
41%. The resulting average increase due to the intervention in the whole area was 55%.

Table 41: WBA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std. Dev. Min. Max. Relchange baseline  RelChange T
WBA 2022 r1 treatiszero 0.156 0.151 0.058 0.000 0.668 -
WBA 2022 r1 treatisone 0.265 0.260 0.059 0.000 0.777 0.70 0.70
WBA 2022 r2 treatiszero 0.255 0.248 0.059 0.000 0.544 0.63
WBA 2022 r2 treatisone 0.364 0.357 0.059 0.099 0.653 1.33 0.43
WBA 2023 r1 treatiszero 0.167 0.160 0.057 0.000 0.652 0.07
WBA 2023 r1 treatisone 0.276 0.270 0.058 0.000 0.761 0.77 0.65
WBA 2023 r2 treatiszero 0.268 0.262 0.056 0.000 0.773 0.72
WBA 2023 r2 treatisone 0.377 0.371 0.056 0.105 0.882 1.42 0.41
Average changes 0.80 0.55

Table 42 reports the descriptive statistics of the WBR indicator estimates over the whole target
area (ca. 17,000 ha) for the two rounds in the two years 2022 and 2023. The results show a
positive trend with respect to the 2022 baseline (control), with strong increase in the second
rounds of both 2022 and 2023 in the intervention fields. The increase due to the intervention
with respect to the control was more evident in the first rounds, in which values for the control
are close to 0.1, with increases equal to 146 and 135% in the first and the second year,
respectively, while in the second rounds they were equal to 58% in both years. The resulting
average increase due to the intervention in the whole area was 99%. The spatiotemporal
dynamics of the WBA indicator in response to environmental and anthropic drivers are
presented in Figure 44.

Table 42: WBR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline RelChange T

WBR_2022_r1_treatiszero 0.096 0.096 0.053 0.000 1.000 -

WBR_2022_r1_treatisone 0.237 0.238 0.054 0.000 1.000 1.46 1.46
WBR_2022_r2_treatiszero 0.245 0.246 0.046 0.000 1.000 1.54
WBR_2022_r2_treatisone 0.387 0.388 0.046 0.077 1.000 3.01 0.58
WBR_2023 r1_treatiszero 0.104 0.103 0.056 0.000 1.000 0.08
WBR_2023_r1_treatisone 0.245 0.245 0.057 0.000 1.000 1.54 1.35
WBR_2023_r2_treatiszero 0.244 0.246 0.048 0.000 1.000 1.53
WBR_2023_r2_treatisone 0.385 0.387 0.048 0.081 1.000 2.99 0.58

Average changes 1.74 0.99
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Figure 44: Predicted WBR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Table 43 reports the descriptive statistics of the SpA indicator estimates over the whole target
area. The results highlight a consistently positive trend with respect to the 2022 baseline
(control), with stronger increases in the indicator mean value in the second rounds of 2022
and 2023 for both control and intervention fields, highlighting the relevance of seasonality. The
increase in spider abundance due to the intervention with respect to the control was quite
modest in all rounds of both years, being within 4 and 7%, with an average gain of 5%. The
maps underlying the descriptive statistics presented in Table 43 are shown in Figure 45.

Table 43: SpA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std. Dev. Min. Max. Relchange baseline RelChange T

SpA_2022_r1_treatiszero 0.099 0.042 0.124 0.000 0.841 -

SpA_2022 _r1_treatisone 0.105 0.053 0.128 0.000 0.853 0.07 0.07
SpA_2022_r2_treatiszero 0.204 0.190 0.166 0.000 1.000 1.07

SpA 2022 _r2_treatisone 0.213 0.201 0.169 0.000 1.000 1.16 0.04
SpA_2023_r1_treatiszero 0.104 0.042 0.133 0.000 0.721 0.05

SpA_2023 r1_treatisone 0.110 0.053 0.136 0.000 0.732 0.12 0.06
SpA_2023_r2_treatiszero 0.210 0.195 0.169 0.000 0.858 1.12

SpA 2023 r2_treatisone 0.219 0.206 0.171 0.000 0.869 1.22 0.04
Average changes 0.69 0.05

The descriptive statistics presented in Table 44 refer to the SpR spatiotemporal estimates over
the whole target area. The mean indicator values over the area were fairly constant for the
same treatment and round in the two years of observations, with increases over the 2022
baseline being of the same order of magnitude, i.e. ca 35% in the intervention fields at the first
rounds, ca. 72% for the control fields at the second rounds, and >100% for the intervention
fields at the second rounds. Similarly, the relative changes observed in the intervention fields
with respect to the control fields were almost equal in the two years, with increases of ca. 30%
and 20%, respectively, for the first and the second rounds, for an average gain in SpR of 27%.
The maps used to assess the figures in Table 44 are depicted in Figure 46.

Table 44: SpR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T

SpR_2022_r1_treatiszero 0.242 0.240 0.132 0.000 0.724 -

SpR_2022 r1_treatisone 0.323 0.324 0.138 0.000 0.808 0.33 0.33
SpR_2022_r2_treatiszero 0.422 0.428 0.143 0.000 0.930 0.74
SpR_2022_r2_treatisone 0.505 0.512 0.146 0.000 1.014 1.09 0.20
SpR_2023_r1_treatiszero 0.248 0.245 0.137 0.000 0.765 0.03

SpR_2023 r1_treatisone 0.329 0.329 0.143 0.000 0.848 0.36 0.33
SpR_2023_r2_treatiszero 0.410 0.414 0.143 0.000 0.896 0.70
SpR_2023_r2_treatisone 0.493 0.498 0.147 0.000 0.980 1.04 0.20

Average changes 0.61 0.27
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Figure 45: Predicted SpA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Figure 46: Predicted SpR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Table 45: PlaR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline RelChange T
PlaR_2022 r1_treatiszero 0.538 0.536 0.254 0.000 1.000 -

PlaR_2022_r1_treatisone 0.580 0.582 0.250 0.000 1.000 0.08 0.079
PlaR_2022_r2_treatiszero 0.555 0.541 0.236 0.000 1.000 0.03
PlaR_2022_r2_treatisone 0.598 0.586 0.231 0.000 1.000 0.11 0.077
PlaR_2023 r1_treatiszero 0.553 0.548 0.256 0.000 1.000 0.03
PlaR_2023_r1_treatisone 0.595 0.594 0.251 0.000 1.000 0.11 0.076
PlaR 2023 r2_treatiszero 0.529 0.519 0.244 0.000 1.000 -0.02
PlaR_2023_r2_treatisone 0.572 0.565 0.240 0.000 1.000 0.06 0.081
Average changes 0.06 0.078

In the case of the PlaR indicator, the average gain in plant richness due to the in-field
intervention to support biodiversity was consistent in the two rounds of the two years, being
equal to ca. 8%, as shown in Table 45. The relative changes with respect to the 2022 control
baseline were always positive except for the 2023 second round for the control, which showed
a relative -2% decrease. The greatest changes were observed in the intervention fields at the
second round in 2022 and at the first round of 2023, with a gain of 11% in both cases. The
maps showing the spatiotemporal dynamics of the indicator are shown in Figure 47.

The final composite indicator describing the overall biodiversity indicator and its
spatiotemporal dynamics over the Dutch CSA, have been calculated summing the estimates
of the five core indicators for each round, and the sum eventually 0-1 normalized. The resulting
maps are shown in Figure 48 and the raster statistics summarized in Table 46 along with the
relative changes with respect to the baseline and for each round with respect to the control.

Table 46: BioDiv indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std. Dev. Min. Max. Rel change baseline Rel Change T

BioDiv_2022_r1_treatiszero  0.427 0.421 0.170 0.000 1.000 -

BioDiv_2022 _r1_treatisone 0.511 0.507 0.153 0.000 1.000 0.20 0.20
BioDiv_2022_r2_treatiszero 0.513 0.508 0.146 0.000 1.000 0.20

BioDiv_2022 _r2_treatisone 0.535 0.531 0.142 0.000 1.000 0.25 0.04
BioDiv_2023_r1_treatiszero 0.411 0.401 0.166 0.000 1.000 -0.04

BioDiv_2023 r1_treatisone 0.480 0.472 0.150 0.000 1.000 0.12 0.17
BioDiv_2023_r2_treatiszero 0.485 0.482 0.143 0.000 1.000 0.14
BioDiv_2023_r2_treatisone 0.507 0.505 0.140 0.000 1.000 0.19 0.05
Average changes 0.15 0.11

On average the gain in biodiversity was more evident for the first rounds, with a relative
increase of almost 20%, while for the second it is ca 5%, with an overall mean value of 11%.
The trend with respect to the 2022 control baseline was always positive, except for the control
fields in the first round of 2023 for which a mean decrease of -4% was estimated. The greatest
gain was during the second round of 2022 with an increase of 25%, while the corresponding
figure for 2023 was 19%.
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Figure 47: Predicted PlaR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Figure 48: Predicted BioDiv indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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The overall joint trend of all the six indicators, with their synergies and trade-offs, is visually
summarized in the radar graph depicted in Figure 49. The indicator values shown in the figure

are averaged over the two rounds of each year.

WBA
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Figure 49: Radar graph of the round-averaged indicators for the control and the intervention in

the two years of observation.
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3.5 Swiss EBA

The Swiss EBA fields are in the canton of Solothurn in northern Switzerland and the target
area for the upscaling of biodiversity indicators at landscape scale is the agricultural land
(19,662 ha) representing ca. 25% of the total area of the canton. The area presents a wide
range of elevations from the alluvial plain of the Aare River (277 m a.s.l) to the foothills of the
Jura massif (1,445 m a.s.l). Agricultural land use is characterized by small-scale and
diversified farming systems. The average farm size in the canton of Solothurn is 23 ha and
the average parcel size is 0.9 ha, resulting in a heterogeneous pattern of croplands and
grasslands. The predominant agricultural land use is permanent grasslands which covers
around 165 km?, i.e., 67% of the agricultural area in 2015, while rotational grasslands and
arable land cover 14% and 32% of the cantonal area, respectively (FSO, 2015). The
agricultural landscape is characterized by the presence of semi-natural elements, such as
hedgerows, traditional orchards and sown wildflower strips. Agricultural production fields are
interspersed with woodlots.
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Figure 50. Geographical location of the Swiss CSA.
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Following the SHOWCASE sampling protocol, the core indicator data were collected in two
rounds (April and July) in 2022 and 2023 from eleven control fields with flower strips, and
eleven intervention fields. Plant richness was sampled only once every year (first round). The
descriptive statistics of the five biodiversity indicators are summarized in Table 47 for individual
and species counts and their 0-1 normalized indicators for 2022, as the species identification
for 2023 is still on-going at the time of writing this report.

Table 47: Descriptive statistics of the five SHOWCASE core indicators

Core Indicators Valid N Mean Std.Dev. Std. Err. Min Median Max
Counts

WBA 84 2.3 5.1 0.6 0 0 24
WBR 83 0.6 1.0 0.1 0 0 4
SpA 74 16.8 211 2.5 0 8 123
SpR 73 3.8 3.1 0.4 0 3 12
PlaR 45 12.6 7.3 1.1 2 11 33
Indicator (0-1)

Ind WBA 84 0.106 0.230 0.025 0 0.000 1
Ind WBR 83 0.196 0.317 0.035 0 0.000 1
Ind SpA 74 0.186 0.195 0.023 0 0.159 1
Ind SpR 74 0.346 0.272 0.032 0 0.333 1
Ind PlaR 45 0.341 0.235 0.035 0 0.290 1

Table 48 summarizes the descriptive statistics of the five normalized indicators for the control
and intervention fields; statistically significant differences (p< 0.05) in indicator mean values
were detected for WBA, WBR and PlaR indicators, with higher mean values observed for the
intervention fields and lower for the control fields. As for the spider indicators, SpA was slightly
higher in the control fields, while the opposite was observed for SpR. Likewise, in term of
location along the transect, mean indicator values were significantly higher at the field margins
than in the field center for WBA (0.197 vs. 0.007), WBR (0.324 vs.0.051) and PlaR (0.456 vs.
0.231) but not for spiders, with both mean SpA and SpR indicators higher at the field center
(0.155 and 0.219) than at the field margins (0.289 and 0.405). Similar responses were
observed in both control and intervention fields with significantly higher mean indicator values
for WBA, WBR and PlaR at the field margins detected in the intervention fields but not in the
control ones; nevertheless, indicator values were always higher at the field margins. In the
case of PlaR indicator, the differences in mean values were significant also in the control fields.

The mean sampling round values for the bee indicators were consistent in the control fields
for both WBA and WBR, while in the intervention fields the mean values observed during the
second round were somewhat lower in the case of WBA (0.207 and 0.180 respectively) and
remarkably lower in the case of WBR (0.375 and 0.227 respectively). In the case of the spider
indicators, a clear increase was observed for both indicators in the control sites, which was
particularly evident for SpR (0.248 and 0.396 respectively at round 1 and 2), while at the
intervention sites values remained almost constant over the season.
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Table 48: Descriptive statistics of the five SHOWCASE core indicators in the control and

intervention fields of the Hungarian EBA

Indicator
Ind WBA

Ind WBR

Ind SpA

Ind SpR

Ind PlaR

Treatment

Control
Intervention
All Groups
Control
Intervention
All Groups
Control
Intervention
All Groups
Control
Intervention
All Groups
Control
Intervention
All Groups

Means
0.015

0.193
0.106
0.091
0.298
0.196
0.191
0.181
0.186
0.328
0.363
0.346
0.270
0.410
0.341

N
41

43
84
41
42
83
37
37
74
37
37
74
22
23
45

Std.Dev.  Std.Err.
0.039 0.006
0.296 0.045
0.230 0.025
0.215 0.034
0.367 0.057
0.317 0.035
0.209 0.034
0.183 0.030
0.195 0.023
0.282 0.046
0.265 0.044
0.272 0.032
0.211 0.045
0.241 0.050
0.235 0.035

Min
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Median

0.000
0.000
0.000
0.000
0.000
0.000
0.130
0.171
0.159
0.250
0.333
0.333
0.242
0.355
0.290

Max
0.21

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.71
1.00
1.00

The relevance of each single predictor in the RF models is presented in Table 49 and Figure

51.

Table 49: Relevance of RF predictors for the five biodiversity indicators in term of node purity;
colors highlight the most relevant predictors (orange > brown >light brown)

Predictors WEA Indicator WER Indicator SpA Indicator SpR Indicator PlaR Indicator
IncModePurity Rel. % IncModePurity Rel % IncModePurity Rel % IncModePurity Rel % IncModePurity Rel %
dummy_treat 0.149 3.74% 0.149 1.98% 0.00% 0.37% 0.023 0.47% 0.036 163%
dummy_round 0.011 0.28% 0.028 0.38% 0.011 0.45% 0.012 0.24% 0.015 0.70%
swi_prox 0.170 4.26% 0.501 6.65% 0.082 3.29% 0.312 6.35% 0.093 4.21%
road_prox 0.266 6.69% 0.270 3.59% 0.041 1.66% 0.102 2.08% 0.146 6.62%
aspect 0.269 6.76% 0.511 6.78% 0.084 3.37% 0.182 3.70% 0.076 3.42%
elevation 0.082 2.06% 0.191 2.53% 0.127 5.09% 0.207 4.21% 0.069 3.11%
slope 0.088 2.24% 0.213 2.82% 0222 B8.90% 0.388 7.89% 0.072 3.28%
catchslope 0.091 2.28%: 0.146 183% 0.170 6.80% 0.245 4.99% 0.078 3.54%
catcharea 0.356 B.54% 0.223 2.56% 0.119 4.76%: 0.210 4.26% 0.052 2.36%
modcatchar 0.445 11.19% 0.436 5.79% 0.039 1.56% 0.113 2.31% 0.133 6.01%
wi 0.398 10.00% 0244 3.23% 0.145 5.80% 0.154 3.95% 0.079 3.59%
valleydept 0.191 4.75% 0.417 5.53% 0.073 2.92% 0.167 3.40% 0.068 3.09%
swir 0.085 2.13% 0.206 2.73% 0.059 2.34% 0.107 2.17% 0.085 4.30%
50813 0.076 1.91% 0.261 3.46% 0.078 3.11% 0.222 4.51%: 0.072 3.27%
50812 0.088 2.20% 0.339 4.50% 0.135 5.42% 0.258 5.25% 0.157 7.11%
508l 0.078 1.97% 0.255 3.38% 0.073 2.92% 0.216 4.40%: 0.079 3.60%
5053 0.078 1.96% 0.254 33T% 0.067 2.69% 0.195 3.96% 0.071 3.20%
red 0.004 2.37% 0.284 3.77% 0.076 3.05% 0.306 6.23% 0.083 3.76%
ndvi 0.110 2.77% 0.417 5.54% 0.151 6.05% 0.272 5.53% 0.066 2.98%
ndsi 0.151 3.80% 0.236 3.13% 0.054 2.15% 0.131 2.67% 0.073 3.31%
ndbsi 0.077 1.93% 0.272 3.61% 0.111 4.42% 0.174 3.53% 0.082 4.16%
irn 0.080 2.00%: 0.521 6.91% 0.148 5.91% 0.204 4.14% 0.158 7.16%
ir 0.087 2.44% 0.352 4.67% 0.202 8.10% 0.182 3.71% 0.114 5.17%
green 0.173 4.35% 0.253 3.36% 0.052 2.08% 0.145 297% 0.063 2.85%
blue 0.186 4.68% 0.232 3.08% 0.059 2.34% 0.154 3.95% 0.100 4.55%
bi 0.050 2.26% 0.327 4.34% 0.111 4.43% 0.154 3.13% 0.066 3.01%
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Figure 51. RF variable contribution plots for WBA (top left), WBR (top right) for SpA (middle left),
SpR (middle right) and PlaR (bottom center) indicators.

In terms of RF predictor relevance, terrain attributes had a relevant impact on all indicators, in
particular aspect, slope and catchment slope, TWI and valley depth. As observed in all the
other EBA indicators datasets, the dummy variables accounting for treatment and seasonality
ranked very low in their relevance as predictors. Remote sensing indices and spectral bands
reflectance played a very minor role for bee indicators, while in the case of spiders and
vascular plants they were relevant predictors, particularly SoSI2, red, NDVI, IRn and IR.

Table 50 summarizes the results of the MLR model calibration, reporting the coefficient of the
regressions for the spatiotemporal prediction of the five biodiversity indicators. The dummy
variable indicating the effect of treatment was statistically significant (p<0.05) for all indicators
except for SpA, while effect of seasonality was negative and significant for WBR and positive,
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although statistically not significant, for SpA and PlaR. The effects of the distance to the road
network (and to the field margins as well) was significant and negative for WBA, WBR and
PlaR, and positive for SpR (i.e. more species richness in the center of the fields). Among the
terrain derived predictors, aspect was relevant to all indicators and statistically significant for
all excepted SpR. In addition, slope, catchment slope and TWI were selected as predictors by
the stepwise procedure for nearly all indicators. Among the RSI, the reflectance in the near
infrared was positively and significantly correlated with WBA and WBR, while SpA responded
significantly to the reflectance in the infrared band. Both SpA and SpR were negatively and
significantly correlated with NDVI.

Table 50: Coefficients of the MLR calibrated for the normalized biodiversity indicators;
significant coefficients in red (p <0.05) and blue (p>0.10)

Predictors WBA WBR SpA SpR PlaR
Intercept 0.91752 -1.12491 4.00139 -0.63858 -1.37192
Dummy treat 0.14139 0.18810 -0.04494 0.09048 0.23449
Dummy round -0.09612 0.04654 0.25425
road prox -0.00169 -0.00245 0.00198 -0.00248
swf prox 0.00035 -0.00028 -0.00073

aspect 0.00073 0.00074 0.00049 0.00036 -0.00100
catcharea 0.00001 0.00001 -0.00001
catchslope -2.34530 -0.86062 -2.70298 7.12782
elevation -0.00048

modcatchar -0.00001

slope 0.02781 0.06639 -0.02991
twi -0.15845 0.11403 0.05555 0.20659
valley depth -0.00032

green -0.00059

IR 0.00113

IRn 0.00027 0.00040

NDBSI -0.40685

NDSI 0.15577
NDVI -11.61398 -1.03900 -0.37497
red -0.00206

SOSI2 0.00025 0.00024 -0.00029 -0.00004

The results of the comparison of the predictive performance of the two approaches is
summarized in Table 51 and graphically shown in Figure 52. Again, as observed in all of the
other EBAs, MLR outperform RF in terms of lower calibration errors and higher values for
indices of agreement between observed and estimated data. The only exception was
observed for the WBA indicator: in this case the value of R? was higher for the RF estimates
(0.592) than for the MLR ones (0.565) and the ME was lower for the RF than for the MLR, with
all the other error indices and the IoA lower and higher, respectively, for MLR than for RF. It
is worth noting that the value of IoA was negative in the case of RF prediction for the PlaR
indicator, indicating a negative relationship between observed and predicted indicator values.
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Table 51: Calibration error indices for MLR and RF predictive model for the five biodiversity
indicators

Error WBA Indicator WBR Indicator SpA indicator SPR Indicator PlaR Indicator
indices RF MLR RF MLR RF MLR RF MLR RF MLR
ME -0.006 -0.019 -0.007 -0.019 -0.003 -0.001 0.000 0.000 0.006 0.000
AE 0.116 0.096 0.208 0.128 0.118 0.091 0.184 0.114  0.209 0.144
RMSE 0.170 0.155 0.271 0.176 0.184 0.131 0.241 0.145 0.253 0.175
R2 0.592 0.565 0.278 0.641 0.113 0.543 0.208 0.692  0.060 0.435
MSR 0.029 0.024 0.073 0.031 0.034 0.017 0.058 0.021 0.064  0.030
oA 0.684 0.803 0.522 0.853 0.400 0.825 0.524 0.900 -0.258 0.755
0.90
0.70
0.50
0.30
= ‘ll NN |‘| I “ |
= | .I | | - I - | = [ | I- I u = II [ |
o RF MLR RF MLR RF MLR RF MLR RF MLR
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Figure 52: Calibration error indices for MLR and RF predictive model for the five biodiversity
indicators in the Swiss EBA

Table 52: WBA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median  Std. Dev. Min. Max. Relchange baseline RelChange T
WBA 2022 r1 treatiszero 0.050 0.000 0.075 0.000 1.000 -

WBA 2022 r1 treatisone 0.139 0.129 0.120 0.000 1.000 1.80 1.80
WBA 2022 r2 treatiszero 0.049 0.000 0.075 0.000 1.000 -0.01

WBA 2022 r2 treatisone 0.137 0.124 0.121 0.000 1.000 1.75 1.79
WBA 2023 r1 treatiszero 0.091 0.000 0.157 0.000 1.000 0.84

WBA 2023 r1 treatisone 0.167 0.097 0.201 0.000 1.000 2.37 0.83
WBA 2023 r2 treatiszero 0.051 0.000 0.077 0.000 0.485 0.03

WBA 2023 r2 treatisone 0.141 0.130 0.122 0.000 0.626 1.85 1.76

Average changes 1.23 1.54
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Figure 53: Predicted WBA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Table 52 summarizes the raster statistics for the WBA indicator estimates over the whole
target area (16,662 ha). The results highlight that in 2022 the increase in the indicator value
due to the intervention was almost equal in both rounds, i.e. ca. 180%, while in 2023 the
increase in the second round was more than double with respect to the first one. The average
gain due to the intervention was >150%. The sign of the trend with respect to the baseline was
always positive, except for the control fields in the second round of 2022, with a decrease of -
1%; the corresponding figure in 2023 was a small increase of 3%. The raster maps depicting
the WBA indicator spatiotemporal variability are presented in figure 53.

Table 53: WBR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median  Std. Dev. Min. Max. Relchange baseline RelChange T

WBA 2022 r1 treatiszero 0.185 0.167 0.158 0.000 1.000

WBA 2022 r1 treatisone 0.352 0.355 0.187 0.000 1.000 0.91 0.91
WBA 2022 r2 treatiszero 0.100 0.047 0.125 0.000 0.784 -0.46

WBA 2022 r2 treatisone 0.243 0.235 0.171 0.000 0.972 0.31 1.43
WBA 2023 r1 treatiszero 0.215 0.137 0.244 0.000 1.000 0.16

WBA 2023 r1 treatisone 0.355 0.325 0.281 0.000 1.000 0.92 0.65
WBA 2023 r2 treatiszero 0.111 0.072 0.121 0.000 0.710 -0.40

WBA 2023 r2 treatisone 0.264 0.260 0.162 0.000 0.898 0.43 1.38
Average changes 0.27 1.09

The raster statistics for the WBR indicator are summarized in Table 53. The gain in terms of
average increase of the indicator was similar in the two years and more evident in the second
rounds with values around 140%, while for the first rounds the increase was equal to 90% in
2020 and 65% in 2023. With respect to the control baseline of the first round in 2022, the
average gain was ca. 30%, with a decrease in the average indicator values observed in the
control fields at the second round in both years, equal to -46 and -40% in 2022 and 2023,
respectively. The spatiotemporal dynamics of the WBR indicator is illustrated in Figure 54,
which shows the predicted indicator maps for the two rounds in the two years for control and
treatment management scenarios.
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The raster statistics for the spider indicators are summarized in Tables 54 and 55 for the
abundance and the richness indicators, respectively.

Table 54: SpA indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median  Std. Dev. Min. Max. Rel change baseline RelChange T

SpA_2022 _r1_treatiszero 0.235 0.193 0.208 0.000 1.000 -

SpA_2022_r1_treatisone 0.197 0.148 0.202 0.000 1.000 -0.16 -0.16
SpA_2022_r2_treatiszero 0.242 0.216 0.184 0.000 1.000 0.03
SpA_2022_r2_treatisone 0.202 0.171 0.177 0.000 1.000 -0.14 -0.16
SpA_2023 r1_treatiszero 0.286 0.230 0.252 0.000 1.000 0.22
SpA_2023_r1_treatisone 0.249 0.185 0.247 0.000 1.000 0.06 -0.13
SpA_2023 _r2_treatiszero 0.230 0.213 0.171 0.000 1.000 -0.02
SpA_2023_r2_treatisone 0.191 0.168 0.164 0.000 1.000 -0.19 -0.17
Average changes -0.03 -0.15

As for the SpA indicator, the results highlight a negative impact of the intervention in all rounds
and years, with a fairly constant decrease of the mean indicator value of -15%. With respect
to the baseline, a 3% increase was observed in the control fields at the second round of 2022,
while in 2023 positive gains were estimated for the first round in both control and intervention
fields, with average increases equal to 22 and 6%, respectively. The raster maps underpinning
the statistics in Table 54 are shown in Figure 55.

The impacts of the intervention and of the spatiotemporal dynamics were quite different for
the SpR indicator. In this case we estimated an average increase of 28% in the mean value
of the indicator in the intervention fields, with constant gains over rounds and years, as
observed in the case of the abundance indicator. Likewise, the trend with respect to the
baseline was always positive, excepted for the first round of the second year in the control
fields where a -1% average decrease was predicted. The increase in the intervention fields
was more evident in the second round of the second year, with a 45% average gain, while it
was equal to or <30% in all other cases. During the second round of the second year, a 15%
increase was estimated for the control fields as well. Figure 56 portrays the eight maps of the
SpR indicator for the control and the intervention scenarios in the two rounds of 2022 and
2023.

Table 55: SpR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median  Std. Dev. Min. Max. Relchange baseline RelChange T

SpR_2022_r1_treatiszero 0.276 0.245 0.226 0.000 1.000 -

SpR_2022_r1_treatisone 0.355 0.336 0.234 0.000 1.000 0.29 0.29
SpR_2022_r2_treatiszero 0.279 0.250 0.220 0.000 1.000 0.01
SpR_2022_r2_treatisone 0.359 0.341 0.227 0.000 1.000 0.30 0.29
SpR_2023_r1_treatiszero 0.274 0.236 0.242 0.000 1.000 -0.01
SpR_2023_r1_treatisone 0.351 0.327 0.251 0.000 1.000 0.27 0.28
SpR_2023_r2_treatiszero 0.316 0.294 0.223 0.000 1.000 0.15
SpR_2023_r2_treatisone 0.398 0.385 0.227 0.000 1.000 0.45 0.26

Average changes 0.21 0.28
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Figure 55: Predicted SpA indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention.
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Figure 56: Predicted SpR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention
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The descriptive statistics for the plant richness indicator PlaR are summarized in Table 56.
The average increases in the indicator mean values were very similar in the two years, and in
the first rounds these were almost double with respect to the second, with gains of ca. 60%
and 34% respectively for the first and the second rounds. The average increase in the PlaR
indicator resulting from the intervention was equal to 47%. Apart from the first round of 2023
in the control fields, which exhibited a decrease equal to -2%, the changes with respect to the
baseline were always positive and nearly equal in the two years: for the intervention at rounds
1, ca. 60%, for the control at rounds 2, ca. 60%, and for the intervention at rounds 2, >125%.
The raster maps underlying the zonal statistics presented in the table are shown in Figure 56.

Table 56: PlaR indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median  Std. Dev. Min. Max. Rel change baseline RelChange T

PlaR_2022 r1_treatiszero  0.330 0.256 0.298 0.000 1.000 -

PlaR_2022_r1_treatisone 0.528 0.491 0.271 0.000 1.000 0.60 0.60
PlaR_2022 r2_treatiszero  0.555 0.523 0.266 0.000 1.000 0.68
PlaR_2022_r2_treatisone 0.746 0.757 0.216 0.000 1.000 1.26 0.34
PlaR 2023 r1_treatiszero  0.323 0.246 0.300 0.000 1.000 -0.02
PlaR_2023_r1_treatisone 0.520 0.480 0.274 0.000 1.000 0.57 0.61
PlaR 2023 r2_treatiszero  0.564 0.532 0.264 0.000 1.000 0.71
PlaR_2023_r2_treatisone 0.753 0.767 0.213 0.000 1.000 1.28 0.34
Average changes 0.72 0.47

From the sum of the five biodiversity indicators for each round of sampling and for the two
years considered, the combined biodiversity indices were calculated, 0-1 normalized and
mapped, as shown in Figure 58. The rasters were used as the basis to calculate zonal
statistics for the target land use area, which are presented in Table 57.

Table 57: BioDiv indicator raster statistics and relative changes with respect to the baseline and
to the control of each round.

Indicator year r treat Mean Median Std.Dev. Min. Max. Rel change baseline  RelChange T

BioDiv_2022_r1_treatiszero 0.330 0.311 0.135 0.000 1.000 -

BioDiv_2022_r1_treatisone 0.409 0.394 0.126 0.000 1.000 0.24 0.24
BioDiv_2022_r2_treatiszero 0.339 0.316 0.131 0.000 1.000 0.03
BioDiv_2022_r2_treatisone 0.364 0.353 0.127 0.000 1.000 0.10 0.08
BioDiv_2023_r1_treatiszero 0.321 0.303 0.147 0.000 1.000 -0.03

BioDiv_2023 _r1_treatisone 0.359 0.348 0.143 0.000 1.000 0.09 0.12
BioDiv_2023_r2_treatiszero 0.378 0.354 0.126 0.000 1.000 0.15
BioDiv_2023_r2_treatisone 0.435 0.425 0.125 0.000 1.000 0.32 0.15
Average changes 0.13 0.15

The overall average biodiversity gain resulting from the implementation of the biodiversity
friendly management practice was equal to 15%, with similar values in the two rounds of 2023,
while in 2022 the gain for the first round (24%) was three times as much that of the second
round (8%).
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Figure 57: Predicted PlaR indicator maps (res. 10 m) for round 1 (first row) and round 2 (second
row) in 2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I:
Intervention
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Figure 58: BioDiv indicator maps (res. 10 m) for round 1 (first row) and round 2 (second row) in
2022, and for round 1 (third row) and round 2 (forth row) in 2023; C: Control, I: Intervention
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The overall trend of the BioDiv composite indicator with respect to the baseline is
characterized by positive values except for a -3% decrease estimated for the control scenario
in the first round of 2023. For the intervention scenario, the highest increase was observed in
the second round of 2023 with a gain above 30%, while for the control scenario there was a
15% increase for the same round of the second year. The overall annual trends of the six
upscaled indicators, averaged over the rounds of each year, are shown in Figure 59.
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Figure 59: Radar graph of the estimates of the round-averaged indicators for the control and the
intervention in the two years of observation.
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4. Comparing mechanistic and data driven model results for
pollinator occurrence in five EBAs

The mechanistic model of Lonsdorf et al. (2009) as implemented in Zulian et al. (2013) was
applied in the five selected upscale CSAs encompassing the SHOWCASE EBAs to estimate
pollinator abundance. The model provided as output a spatially explicit dimensionless score
with values ranging from 0 to 1, describing the expected relative pollinator abundance to a
given location across the landscape, i.e. the pollinator abundance for each pixel. This allowed
the comparison with the WBA indicator inferred for the same CSAs via MLRs. Results are
summarized in Table 58, where the model results are compared with the data driven approach
results for the control scenarios. Descriptive statistics are also provided for the estimated WBA
indicator means over the two rounds of the two years, and these figures for the five CSAs are
compared with the mean scores and visually displayed in Figure 60.
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HU ' - NL
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SHIWCASE 2022-2023

0.00 0.05 0.10 0.15 0.20 0.25
ES PT
Lonsdorf et al. 2009

Lonsdorf 2009  e====Showcase 2024

Figure 60: Radar graph and scatterplot comparing the WBA indicator estimates of the
mechanistic model of Lonsdorf et al. (2009) with the data driven models calibrate for each EBAs.

In average terms, i.e. considering the mean value WBA indicators for the two rounds of the
two years, the estimates over the whole area are almost equal for the Spanish CSA, with an
average difference in the score values equal to 0.009 and a relative difference with respect to
the mechanistic model score of 5.2%, i.e. a slight overestimation. In all the other CSAs the
difference is greater, with a 33.6% overestimation in the Portuguese CSA and a 67.1%
underestimation in the Dutch CSA. In the Hungarian, and to a less extent in the Swiss CSA,
the mechanistic model again returns pollinator abundance scores smaller than the average
ones estimated via the data driven approach under the control scenario.
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Table 58: WBA indicator values and pollinator abundance estimated with the mechanistic model

EBA Country Year Round Mean Median  Std. Dev. Min. Max. Mean Diff  Rel. Diff.
CH Solothurn
Lonsdorf 2009 0.047 0.047 0.125 0.005 0.829
2022 1 0.050 0.000 0.075 0.000 1.000 -0.003 -6.1%
2022 2 0.049 0.000 0.075 0.000 1.000 -0.002 -4.8%
2023 1 0.091 0.000 0.157 0.000 1.000 -0.045 -95.8%
2023 2 0.051 0.000 0.077 0.000 0.485 -0.004 -9.6%
Mean control 0.060 0.000 0.096 0.000 0.871 -0.014 -29.1%
NL Zuid Limburg
Lonsdorf 2009 0.127 0.153 0.104 0.005 0.787
2022 1 0.156 0.151 0.058 0.000 0.668 -0.030 -23.3%
2022 2 0.255 0.248 0.059 0.000 0.544 -0.208 -101.2%
2023 1 0.167 0.160 0.057 0.000 0.652 -0.120 -31.8%
2023 2 0.268 0.262 0.056 0.000 0.773 -0.222 -111.9%
Mean control 0.211 0.206 0.058 0.000 0.659 -0.165 -67.1%
PT Alentejo
Lonsdorf2009 0.208 0.230 0.130 0.005 0.891
2022 1 0.076 0.061 0.074 0.000 0.726 0.133 63.6%
2022 2 0.016 0.000 0.036 0.000 0.468 0.192 92.1%
2023 1 0.222 0.219 0.096 0.000 0.822 -0.014 -6.6%
2023 2 0.239 0.227 0.131 0.000 1.000 -0.031 -14.8%
Mean control 0.138 0.127 0.084 0.000 0.754 0.070 33.6%
ES Guadalquivida
Lonsdorf 2009 0.172 0.237 0.118 0.005 0.899
2022 1 0.089 0.084 0.072 0.000 1.000 0.082 47.9%
2022 2 0.052 0.038 0.055 0.000 0.977 0.120 69.7%
2023 1 0.291 0.294 0.080 0.000 1.000 -0.119 -69.4%
2023 2 0.219 0.221 0.076 0.000 1.000 -0.047 -27.3%
Mean control 0.163 0.159 0.071 0.000 0.994 0.009 5.2%
HU Kiskunsag
Lonsdorf2009 0.060 0.010 0.156 0.005 0.822
2022 1 0.079 0.053 0.086 0.000 0.891 -0.019 -30.7%
2022 2 0.137 0.125 0.109 0.000 0.825 -0.076 -126.8%
2023 1 0.068 0.034 0.079 0.000 0.683 -0.007 -12.1%
2023 2 0.127 0.127 0.105 0.000 0.670 -0.067 -111.5%
Mean control 0.103 0.085 0.095 0.000 0.767 -0.042 -70.3%

As both models provide spatially explicit outputs, it is interesting not only considering the mean
estimated values over the entire CSAs but also the difference in the spatial patterns of the
estimated pollinator abundance. Figure 60 shows the estimated pollinator abundance with
the two approaches; to highlight the differences in the spatial distributions the raster maps are
displayed using a first legend with equal intervals and a second one based on the deciles of
the estimated distribution. In addition, a map displaying the relative differences between the
two results is provided, to highlights the occurrence of positive and negative differences with
respect to the mechanistic model.
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Figure 61: Comparison of estimated pollinator abundance in the Hungarian CSA: mechanistic
model outputs (left), data driven output s(center) and relative differences with respect to the
averaged outputs of the data driven model for the control scenario (right).

As can be seen in Figure 61, the relative differences were positive in most of the non-irrigated
arable land use (81% of the area) with a systematic underestimation of pollinator abundance
by the mechanistic model (average score 0.018) with respect to the data driven one (average
score for the control scenario equal to 0.066). In the area under pasture (17.5% of the area)
again the mechanistic model provided estimates which were significantly lower (average
0.068) than those estimated with the data driven model (average 0.104) and the same was
observed for the area with complex cultivation patterns, representing ca. 0.6% of the area:
here the mechanistic model returned an average score equal to 0.120, while the data driven
estimates for the controls were equal to 0.163. Only for the land principally occupied by
agriculture with significant areas of natural vegetation (ca. 0.9% of the total area), the
mechanistic model provided higher pollinator abundance estimates, with an average score
equal to 0.444 against the 0.144 provided by the data driven model. Results, and differences,
are strongly determined by the scores that the model adopts for the different CLC classes to
estimate nesting and flowering suitability for the pollinators. Furthermore, there was also an
effect of the coarser resolution of the climate variables in determining pollinator activity, as it
is evident from the raster map displaying the deciles of the estimated distribution of pollinator
abundance with the mechanistic model (Figure 60, bottom left), with increasing values from
north to south.

Figure 62 shows the relative differences between the two approaches for the target land use
(i.e., permanent fruit orchards) for the Spanish CSAs; the figure displays the pollinator
abundance map resulting from the two approaches.
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Figure 62: Comparison of estimated pollinator abundance in the Spanish CSA: mechanistic
model outputs (top left), data driven outputs (top right) and relative differences with respect to
the averaged outputs of the data driven model for the control scenario (bottom).

The mechanistic model returned overall higher values for the target area (0.172) when
compared to the control MLR estimates for 2022 (0.089), but lower than that of 2023 (0.291).
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When averaging all the control fields across all years and rounds (0.163), the two estimates
were very similar, but the spatial patterns were quite different. According to the mechanistic
model, higher pollinator abundance occurred north of the river stream, in the western part of
the area, while according to the MLR predictions higher abundance was estimated south of
the river in the central part of the CSA, where higher discrepancies between the predictions of
the two models were observed.
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Figure 63: Comparison of estimated pollinator abundance in the Portuguese CSA: mechanistic
model outputs (left), data driven outputs (center) and relative differences with respect to the
averaged outputs of the data driven model for the control scenario (right).

In the Portuguese CSA, the mechanistic model provided higher estimates (0.208) with respect
to the averaged outputs for the control scenarios predicted with the data driven approach
(0.138). This is in great part due to the very low values estimated for the two rounds of 2022
(average 0.042) which were characterized by an extremely severe drought, the effects of
which cannot be considered by the mechanistic model. This explanation could be supported
by the fact that in 2023 average MLR estimates were very close to the predictions of the
mechanistic model (0.231). Furthermore, from Figure 63 a north-south gradient in relative
difference in model results appears very clearly, with the data driven model providing results
well below those of the mechanistic approach in the north and in the center of the CSA, while
positive differences are evident in the south-western part. Targeting only one land use class
(i.e. permanent orchard) and considering that the CSAs spans over more than 100 km from
north to south, it is likely that a key role is played by the climatic drivers used in the mechanistic
model to consider the effect of weather on pollinator activity.
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Results for the Dutch CSA are illustrated in Figure 64, which shows the output raster maps
using a common legend with equal intervals and a legend with the deciles of the estimated
distributions, and the relative differences between the two results.

Figure 64: Comparison of estimated pollinator abundance in the Dutch CSA: mechanistic model
outputs (top left), data driven outputs (top right) and relative differences with respect to the
averaged outputs of the data driven model for the control scenario (bottom).
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In this case results of the two approaches were similar when considering only the first rounds
of data driven outputs for the control scenarios, which returned an average pollinator
abundance equal to 0.16, which is close to the score of 0.13 provided by the mechanistic
model. The spatial pattern of the relative differences between the two results displays two
distinct features: large continuous areas where the MLR estimates were more than double
those provided by the mechanistic model and smaller patches with a “bull’'s eye” pattern
particularly evident at the center of the large agricultural fields. The former pattern is likely to
be due to the combined effects of average temperature and solar radiation, which the
mechanistic model uses to account for the effect of weather on pollinator activity. The latter
pattern is likely due to the MLR model which includes the distance from the road network as
significant predictor of pollinator abundance, which in the case of the in-field intervention in
the Dutch EBA fields, increases with increasing distance from the margin of the fields, being
particularly evident in the case of large fields.

For the Swiss CSA, Table 58 shows that the results provided by the two models are similar in
both rounds of 2022, being equal to 0.047 for the mechanistic model and 0.050 and 0.049 for
the MLR model for the first and the second round, respectively. In 2023 the estimates of the
data driven approach were higher for the first round (0.091), but again quite close to those of
the mechanistic model in the second (0.051).
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Figure 65: Comparison of estimated pollinator abundance in the Swiss CSA: mechanistic model
outputs (left), data driven outputs (right).
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In the maps shown in Figure 65 the differences between the two results appear to be difficult
to detect using the same regular interval scale, being in both cases characterized by low
occurrence values almost everywhere in the CSA. When using the deciles of the estimated
abundance distribution, the differences in the spatial patterns were more evident, and in the
case of the mechanistic model there was a dominant regional trend with decreasing values
from the south-west to the north-east of the area, while in the case of the data driven approach
the overall spatial trend was determined by the role played by elevation and terrain slope.
Similar results have been found by Le Clec'h et al. (2019) who calibrated a data driven model
to estimate pollinator abundance in the grasslands of the same CSA using MLR. The
distribution of the relative differences between the data driven results and those of the
mechanistic model with respect to the latter are shown in Figure 66.
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Figure 66: Comparison of estimated pollinator abundance in the Swiss CSA: relative differences
between the data driven results and those of the mechanistic model with respect to the latter.
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5. Discussion

The results presented in this Deliverable report provide an improved understanding of the
potential impacts at the regional scale of the implementation of biodiversity management at
the field scale. The MLR predictive models calibrated on field data delivered spatially explicit
and time dynamic assessments of biodiversity indicators, highlighting the role played by the
different drivers, and allowed for an assessment of the potential biodiversity gains resulting
from the interventions in the specific context of each EBA.

5.1. Biodiversity indicators: comparing the five EBAs responses to biodiversity
management

Using 0-1 interval normalised indicators allowed trends to be easily detected over time and
space, the assessment of relative differences with respect to a baseline or a reference state,
represented by the upscaling results for the control scenarios, and the comparison of results
averaged over large areas among different CSAs. The following figures show the round
averaged values and the relative differences of the indicators under the two biodiversity
management scenarios in the five CSAs considered for the analysis. Average indicator values
and their relative changes are summarized in Table 59.
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Figure 67: Average values in WBA and WBR indicators in the five EBAs in 2022 and 2023 and
yearly relative differences (RI) due to the biodiversity management intervention
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Table 59: Average biodiversity indicators in the five EBAs in 2022 and 2023 and relative
differences due to the implementation of biodiversity management.

Indicator Country 2022 C 2022 | 2023 C 2023 | REL_1 2022 REL_12023
WBA HU 0.11 0.19 0.10 0.18 76% 82%
ES 0.07 0.20 0.25 0.34 180% 35%
PT 0.05 0.15 0.23 0.37 221% 60%
NL 0.21 0.31 0.22 0.33 53% 50%
CH 0.05 0.14 0.07 0.15 179% 116%
WBR HU 0.12 0.27 0.16 0.32 119% 95%
ES 0.27 0.58 0.27 0.58 118% 114%
PT 0.14 0.38 0.26 0.56 170% 112%
NL 0.17 0.31 0.17 0.31 82% 81%
CH 0.14 0.30 0.16 0.31 109% 90%
SpA HU 0.10 0.10 0.15 0.14 -3% -2%
ES 0.19 0.17 0.11 0.12 -11% 7%
PT 0.16 0.14 0.22 0.19 -12% -14%
NL 0.15 0.16 0.16 0.16 5% 5%
CH 0.20 0.16 0.22 0.18 -22% -20%
SpR HU 0.35 0.31 0.21 0.17 -13% -18%
ES 0.23 0.25 0.22 0.24 6% 6%
PT 0.28 0.30 0.25 0.26 5% 6%
NL 0.33 0.41 0.33 0.41 25% 25%
CH 0.28 0.36 0.30 0.37 29% 27%
PlaR HU 0.22 0.42 0.20 0.41 93% 106%
ES 0.32 0.41 0.55 0.65 29% 17%
PT 0.54 0.63 0.77 0.86 17% 12%
NL 0.55 0.59 0.54 0.58 8% 8%
CH 0.44 0.64 0.44 0.64 44% 44%
BioDiv HU 0.26 0.36 0.24 0.33 36% 37%
ES 0.26 0.35 0.30 0.40 33% 35%
PT 0.33 0.37 0.35 0.42 14% 20%
NL 0.47 0.52 0.45 0.49 11% 10%
CH 0.33 0.39 0.35 0.40 16% 14%

From the results in the table and trends shown in Figure 67, in the first year the highest relative
increase in WBA mean indicator values were detected in the permanent orchards of Portugal
and Spain, whose indicator values for the control baseline in 2022 are the lowest among the
five EBAs. It is worth noting that the values for the intervention scenario in 2022 for these two
CSAs were even lower than those for the control scenario in 2023. The figures were indeed
quite similar in the Swiss CSA, with a very low WBA indicator value in the control of 2022 and
a strong increase due to the intervention. In 2023, the relative increases estimated for the
Portuguese and Spanish EBAs are much lower, as there was a general increase of the WBA
indicator in both the control and intervention. The highest relative increase was observed in
the Swiss EBA, for which the value of the WBA indicator for the control was only slightly higher
than in the previous year. Relative changes in the Netherlands were constant in the two years,
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while in the Hungarian EBA there was an increase in 2023 with respect to 2022. For the WBR
indicator, the relative increases were quite similar for the two years in all CSAs, with slightly
higher values in 2022 in all cases. Again, higher relative increases were estimated for the
permanent orchard of Andalucia and Alentejo, and lower ones for the in-field intervention in
the arable fields of Zuid Limburg. The bee indicators are by far those most impacted by the
implementation of the biodiversity friendly management.

The results for the two spider indicators in the five CSAs are shown in Figure 68. In the case
of the SpA indicator, the changes due to the intervention were negative in almost all CSAs,
with similar values in the two years, except for the increases in Guadalquivida in 2023, and in
Zuid Limburg in 2022 and in 2023. The relative decreases were stronger in Solothurn.
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Figure 68: Average values in SpA and SpR indicators in the five EBAs in 2022 and 2023 and
yearly relative differences (RI) due to the biodiversity management intervention

Differently from SpA, the relative changes in SpR due to the intervention were positive in all
CSAs but Kiskunsag, with very similar values in the two years. The highest relative increases
were observed in the Swiss and in the Dutch CSAs.
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Figure 69: Average values in PlaR and BioDiv indicators in the five EBAs in 2022 and 2023 and
yearly relative differences (RI) due to the biodiversity management intervention

The increase in vascular plant richness following the intervention is rather consistent in the
two years; the highest increase was estimated for the Hungarian CSA and the lowest for the
Dutch one (Figure 69). In the permanent orchards of the Portuguese and Spanish CSAs the
values of the indicator for the control scenario in 2023 had average values higher than the
intervention values in 2022, similarly to what was observed for the WBA indicator in the two
sites.

The composite indicator BioDiv provides a synthesis of the overall effect of the intervention on
all the considered biodiversity indicators, expressing the overall gain in biodiversity deriving
from the adoption of management practices which promote farmland biodiversity. This was
higher in areas with lower indicator scores for the control scenarios such as Kiskunsag in
Hungary and Guadalquivida in Spain with relative increase between 33 and 37%, while it was
lower where the control indicators have high scores, as in Zuid Limburg characterized by a
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relative increase of ca. 10% in both years. This could be due to the farms in the Dutch EBA
being organic and the ones in the Spanish EBA being extremely intensive

A synthetic representation of the overall biodiversity status in each CSA is shown by the
stacked columns chart depicted in Figure 70, where each bar presents the contribution of each
indicator to the overall biodiversity status in the two years of observations in the five EBAs
under the two scenarios (i.e., control and intervention).
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Figure 70: Overall biodiversity status in each CSA as contributed by the six biodiversity
indicators under the two management scenarios (control and intervention) in 2022 and 2023

5.2. Biodiversity indicators: comparing data driven predictive models

The identification of the best approach to model the spatiotemporal variability of the
biodiversity indicators based on EBAs data was based on the comparison of error and
agreement indices for the predictions of a machine learning approach and of a more classical
regression-based approach. As discussed in the second chapter of the report, RF and
stepwise MLR were tested in all CSAs and on all indicators, and MLR systematically
outperformed RF in terms of reduced calibration errors and increased agreement between
observed and predicted values. Although there is a vast amount of literature reporting the
superiority of machine learning algorithms and in particular RF over MLR, there are several
cases that report the opposite. There are indeed specific scenarios where RF underperforms
compared to MLR:

1. Limited Data Availability: in scenarios where there is limited data availability, MLR may
outperform RF due to its ability to handle small datasets effectively (Adewale et al., 2024; Maia
et al., 2021). When the number of features is extremely large compared to the number of
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samples and the percentage of truly informative features is very small, the performance of
traditional RF declines significantly (Gosh and Cabrera, 2022).

2. Linear Relationships: when the relationships between predictors and the target variable are
predominantly linear, MLR may outperform RF, as it is well suited for capturing linear
relationships (Zanella et al., 2017; Jenkins et al., 2018).

3. Interpretability: in cases where interpretability is crucial, MLR may be preferred over RF, as
it provides easily interpretable coefficients for each predictor (Borup et al., 2023).

4. Overfitting Concerns: RF may underperform when there are concerns about overfitting,
especially if the model is not validated on holdout data to ensure it is not over-fitted to the
learning set (Adewale et al., 2024).

5. Bounded Outcome Variables: for bounded outcome variables restricted to the unit interval,
classical modeling approaches based on mean squared error loss, such as RF, may suffer
due to not accounting for heteroscedasticity in the data (Maia et al., 2021).

Data availability, strong linear relationships, and bounded outcome variables are all factors
that might have played a role in the poor predictive performance of RF when applied to the
SHOWCASE EBAs data. As for point 3, interpretability is indeed a desirable outcome provided
by MLR as it might provide some insights useful to disentangle the complex relationships
between anthropic pressures, landscape attributes, habitat features and biodiversity.

5.3. Biodiversity indicators: assessing the impact of drivers

The impact of environmental and anthropic drivers differed in the five EBAs considered in
this report, but the identification of a subset of predictors resulting in the best performing
models allows the assessment of which are variables are the most frequently chosen in the
twenty MLR models that were calibrated.

The predictors describing landscape features, i.e. the distance from the road network and
from small woody features, were selected in 70 and 60% of the MLR models, respectively,
being statistically significant in 86 and 42% of the cases, respectively, where they were used
as predictors. In all cases, pollinators and plant indicators increased closer to SWF and along
field margins, and in particular wild bees’ and plants’ species richness declined with distance
from field margins, confirming that diverse and structured agricultural landscapes with small
cultivation units would favour farmland biodiversity. Based on the value of the standardised
regression coefficients, though, the explanatory power of these predictors on average
accounted for 4 to 13% of the observed variability, with a minimum in the case of the spider
indicators (ca. 2%) and a maximum for plant species richness indicator (30%).

The effects of terrain attributes as drivers of biodiversity indicators were strongly linked to
the geomorphological settings of each CSA. Among the terrain attributes, aspect, catchment
slope and topographic wetness index were all considered in 40% of the regression models,
being statistically significant in 88, 63, and 50% of the models, respectively, where they are
used as predictors. As for aspects, significant responses of different signs were observed for
pollinators in the Spanish and Portuguese EBAs as compared to the Swiss one: lower values
for pollinators abundance in the SE-S-SW facing slopes in Guadalquivida and Alentejo, and
higher values of both abundance and species richness in the SE-S-SW facing slopes in
Solothurn. Such contrasting responses are likely to be due to the very different climatic
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conditions which characterised the two years of observations, with a strong and prolonged
drought in the lberian Peninsula. The topographic wetness index was significantly and
positively correlated with the three species’ richness indicators, while catchment slope had a
different impact on the different indicators: positive on pollinators’ and plants’ ones, and
negative on spiders’ ones. Considering the value of the standardised regression coefficients,
the explanatory power of the above mentioned three terrain attributes on average accounted
for a share of the observed variability between 4 and 29% , with an average of 10% for aspect
and TWI and 14% for catchment slope.

Among the remote sensing indices derived from Sentinel-2 data via GEE, 65% of the models
included the soil index SOSI2 (Douaoui and Lepinard, 2010, Yahiaoui et al., 2015) as
predictor, 55% selected the reflectance in the IRn band (Sentinel-2 B8) and 50% the
vegetation index NDVI (Rouse et al., 1974), highlighting the role played by bare soil conditions,
soil moisture and vegetation cover status on the selected biodiversity indicators. Furthermore,
ten additional indices among those listed in Table 2 were selected as predictors by the
stepwise procedure. This confirms, as already observed by Torresani et al. (2023) in
SHOWCASE D1.4, the relevance of vegetation and soil indices from Sentinel-2 data in
describing the conditions that shape pollinator and predator communities at the regional scale.
Additional value of RSI as predictors lies in their availability along the time continuum, which
provides time variant predictors that can successfully catch and predict seasonal and yearly
changes in the status of soil and vegetation affecting biodiversity and ecological processes.
The results presented in this report refer to the two sampling seasons of 2022 and 2023, using
RSI for the same seasons and years as predictors, but it would be possible to apply the models
to back-cast and forecast in different seasons and years even in absence of additional ground
data. Additionally, it would be possible to include additional data from new field surveys in the
EBAs to the current datasets to improve the existing models.
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Figure 71: Average values of the standardized MLR correlation coefficients normalized scores
(0-1) for the biodiversity indicators predictors for the five EBAs in 2022 and 2023.
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To visualize the relevance of the different drivers, Figure 71 depicts the average values of the
standardized MLR correlation coefficients normalized scores for the biodiversity indicators
predictors over the five EBAs in 2022 and 2023. On a normalized 0 to 1 scale, considering all
the five biodiversity indicators and the occurrence of each predictor in all the MLR models
calibrated for the five EBAs, the average scores for the four groups of biodiversity drivers (cf.
Table 2) would be equal to 0.26 for the biodiversity management, 0.15 for the landscape
features, 0.31 for the terrain attributes and 0.40 for the remote sensing indicators (soil and
vegetation health and moisture conditions). Seasonal and interannual variability scored 0.44
and 0.27, respectively. A synthetic representation of the overall contribution of each predictor
to each biodiversity indicators in the five EBAs is shown by the stacked columns chart
depicted in Figure 72, where each bar presents the contribution of each predictor to the
estimation of each single indicator in all EBAs in the two years of observations.
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Figure 72: Overall average contributions in all EBAs of MLR predictors to each biodiversity
indicator expressed in terms of MLR standardized correlations scores.

When considering separately the different biodiversity indicators surveyed in the five EBAs,
the relevance of the different groups of predictors highlights very clearly that the impacts of
the considered drivers changes noticeably, as can be seen in figure 73 which illustrates such
differences in terms of normalised scores of the standardised MLR coefficients for bees,
spiders and vascular plants indicators.
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Drivers' relevance on all biodiversity indicators

: Treatment;
Soil and 0.26; 143
Vegetation
Conditions;
0.45; 2494 Seazonality;

0.44; 23%

Terrain
attributes;

05, 155 Yearly
Landscape variability;
0.27; 14%

features;
0.14; 7

Drivers' relevance on Spiders indicators

Drivers’ relevance on Wild Bees indicators

Soil and Treatment:
Vegetation 0.54; 23
Conditions;

0.56; 23%

Terrain
attributes;
0.20; 8%

Landscape
features;

0.16; 7w Seasonality;

0.58; 2434
Yearly -

variability;
0.36; 15%

Drivers' relevance on Plant Species Richness

indicator
Soil and Treatment; = P——
| Yeestation D7 Soil and 0.17; 10%
Conditions; Vegetation -
0.42; 285 Conditions: Seazonality;
| Seasonality; 0.43: 255 0.12; T
0.41; 2B% )
Yearly
Yearly variability;
variability; 0.37;21%
0.10: 7% -
Terrain
T | attributes;
errain S
Siakag Landscape 0.47; 273 Lfanlisnape
» . feat 9 eatures;
0.37; 25% Ue"‘l IL!';:i 0.18; 10%

Figure 73. Pie charts showing EBAs averaged contribution of MLR predictors to wild bees (top
right), spiders (bottom left) and vascular plants (bottom right) indicators expressed in terms of
MLR standardized correlations scores. The overall scores are also shows (top right)

The highest overall score is observed for Soil and Vegetation Conditions (0.45) as assessed
by the RSIs, indicating that these factors strongly influence all three biodiversity groups
collectively. On the other side, the lowest overall score is associated to Landscape Features
(0.14), suggesting that this factor has the minor influence across the three groups in the five
EBAs. The bees indicators exhibit the strongest impact due to seasonality (0.58) and to Soil
and Vegetation Conditions (0.56), indicating that these factors are particularly important for
bee biodiversity. The lowest score for bees is with Landscape Features (0.16), suggesting that
distance from roads and green infrastructures have a minor impact on bee populations.
Spiders’ indicators showed the strongest impact due to Seasonality (0.41) and Soil and
Vegetation Conditions (0.42), similarly to bees, but the score values are slightly lower. The
weakest impact on spiders indicators is that of biodiversity management treatment (0.07),
which is notably low, indicating that flower strips have almost no influence on spider
biodiversity indicator. Vascular plants showed the strongest scores for Terrain Attributes (0.47)
and Soil and Vegetation Conditions (0.43), suggesting that these factors are critical for plant
species richness. The lowest score for plants is for Seasonality (0.12), indicating that seasonal
variability had little impact on plant biodiversity, as contrasted by yearly variation that resulted
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to play a much significant role. Soil and Vegetation Conditions consistently showed high
scores across all groups (bees: 0.56, spiders: 0.42, plants: 0.43), making them the most
influential factors for biodiversity overall. Seasonality is highly important for bees (0.58) and
moderately important for spiders (0.41), but it has little effect on plants species diversity (0.12).
Biodiversity management interventions are most relevant for bees (0.54) but have almost no
impact on spiders (0.07) and only a moderate effect on vascular plants species richness
(0.17). Terrain Attributes are particularly important for vascular plants diversity (0.47) and
spiders (0.37), but less so for bees (0.20). Landscape Features have the lowest influence
across all groups, with the highest correlation being only 0.18 (vascular plants species
richness).

5.4. Biodiversity indicators: comparing modelling approaches for pollinators

The comparison between the predictions of the data driven model and those resulting from
the application of the parametric model of Lonsdorf et al. (2009), as implemented in Zulian et
al. (2013), has highlighted the role played by the several assumptions underlying the model.
The parametric models offer spatially explicit predictions, but the resulting patterns depend on
the thematic and spatial resolution of the drivers considered, in this case the land use/land
cover class (thematic and spatial resolution) and the climatic data (spatial resolution). Both
can be improved in terms of resolution, and finer-scale input raster can be used as in Haussler
et al. (2017), but still they would only provide an average static assessment over the land use
classes of a given site and for the reference time frame defined by the climatic variables. In
their recent review on pollination supply models, A. Giménez-Garcia et al. (2023) have
proposed possible alternatives to overcome such limitations depending on local data and
expert knowledge availability, which would allow the creation of locally specific tables to apply
to the framework of the Lonsdorf modelling approach. If this is not possible, mechanistic
models are better tailored to provide useful information over large regions rather than at local
scales (Image et al., 2022). The outcomes of the two approaches can be compared, as shown
in this report, in terms of average scores and value patterns and trends over a given area but
comparing their performances in statistical terms is not feasible as the MLR models are
expressions of the calibration data used to train them, and therefore the estimated values
necessarily better replicate the observed ones when compared with the mechanistic model.

5.5. Biodiversity indicators as proxies for ecosystem services provision

Using the five biodiversity indicators as proxies for ecosystem services in the five EBAs, two
regulating and one supporting service were assessed accordingly, namely pollination, pest
control and habitat provision. Pollination and pest control regulating services were derived
from the combination of the abundance and species richness indicators for wild bees and
spiders respectively, resulting in additional 80 spatiotemporal mapping outputs. Habitat
provision for biodiversity on the other side relied on vascular plants species richness as a
proxy; in doing so no new spatiotemporal maps were estimated as these are coincident with
those of the single indicator produced for the two rounds of the two years of observations in
each EBA. The spatiotemporal maps of the pollination and pest control ecosystem services
are presented in Appendix A along with the raster statistics for each CSA. The spatially
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averaged ecosystem services indicators values, as derived from postprocessing the raster
maps, and their relative changes are summarized in Table 60 for the two rounds of sampling
in the two years of EBAs survey; the box and whiskers plot in Figure 74 shows the average
ecosystem services scores by case study area and treatment.

Table 60: Average ecosystem services indicators in the five EBAs in the two sampling rounds
of 2022 and 2023 and relative differences due to the implementation of biodiversity management.

Ecosystem Service Country Round 2022 C 2022_1| 2023 C 2023_I REL_12022 REL_I2023
Pollination HU 1 0.128 0.241 0.136 0.261 88.2% 92.0%
HU 2 0.231 0.350 0.281 0.392 51.7% 39.5%
ES 1 0.304 0.533 0.388 0.594 75.0% 53.0%
ES 2 0.107 0.345 0.180 0.396 221.4% 119.3%
PT 1 0.232 0.481 0.264 0.501 107.1% 89.4%
PT 2 0.029 0.191 0.288 0.498 554.9% 73.1%
NL 1 0.141 0.373 0.232 0.403 163.6% 73.7%
NL 2 0.406 0.451 0.402 0.444 10.9% 10.5%
CH 1 0.117 0.246 0.153 0.261 109.5% 70.6%
CH 2 0.112 0.229 0.141 0.274 104.2% 94.0%
Pest Control HU 1 0.214 0.176 0.155 0.130 -17.8% -15.9%
HU 2 0.548 0.521 0.407 0.377 -5.0% -7.3%
ES 1 0.253 0.249 0.316 0.319 -1.7% 1.0%
ES 2 0.168 0.165 0.173 0.183 -1.8% 5.8%
PT 1 0.283 0.279 0.317 0.313 -1.4% -1.1%
PT 2 0.172 0.172 0.192 0.190 0.4% -1.5%
NL 1 0.267 0.312 0.246 0.288 17.0% 17.2%
NL 2 0.383 0.415 0.391 0.424 8.4% 8.4%
CH 1 0.255 0.276 0.280 0.300 8.2% 7.1%
CH 2 0.260 0.281 0.273 0.295 7.9% 7.9%
Habitat provision HU 1 0.164 0.359 0.155 0.363 119.0% 133.6%
HU 2 0.270 0.481 0.245 0.460 77.8% 88.0%
ES 1 0.300 0.393 0.546 0.639 31.0% 17.0%
ES 2 0.333 0.426 0.562 0.655 28.0% 16.6%
PT 1 0.540 0.633 0.763 0.853 17.2% 11.8%
PT 2 0.544 0.637 0.775 0.863 17.1% 11.4%
NL 1 0.538 0.580 0.553 0.595 7.8% 7.6%
NL 2 0.555 0.598 0.529 0.572 7.7% 8.1%
CH 1 0.330 0.528 0.323 0.520 60.0% 61.0%
CH 2 0.555 0.746 0.564 0.753 34.4% 33.5%

Generally intervention maps show higher average scores for Pollination (+110% on average)
and Habitat (+41% on average) compared to control across all countries and years. This would
suggest that the interventions have the potential to effectively enhance these ecosystem
services at landscape scale. Pest Control scores, though, show less consistent improvement
(less than 2% on average) with interventions and, in some cases, the control scenario perform
similarly, as in the Spanish and Portuguese CSAs, or slightly better, as in the Hungarian CSA.
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In terms of yearly variability, in both scenarios indicator scores for Pollination and Habitat
generally increase from 2022 to 2023 in 90% and 75% of the cases respectively, suggesting
a possible cumulative positive effect of the interventions over time and/or more favourable
climatic conditions. Increases in Pest Control are observed in the Portuguese, Spanish and
Swiss CSAs, where for both scenarios average indicator scores were higher in 2023 with
respect to 2022.
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Figure 74. Average ecosystem services scores by CSA and treatment.

As for seasonality, in the Dutch and Hungarian CSAs there is a general increase from round
1 to round 2 for all indicators, while in the Portugues and Spanish ones Pollination and Pest
Control decrease significantly from round 1 to round 2, while Habitat provision increases.
Similarly in the Swiss CSA Habitat provision increased significantly from round 1 to round 2.

The round averaged indicator scores of the three ecosystem services and the relative
differences of the indicator scores under the two biodiversity management scenarios in the
five CSAs considered for the analysis are summarized in Figure 75.

In the Hungarian CSA, the pollination regulating service (HU) scores significantly higher for
the intervention scenario across both years and rounds. For example, in 2022 Round 2,
intervention scores (0.350) are significantly higher (+52%) than control scores (0.231). On the
other hand, the Pest Control regulating service often score higher in the control than in the
intervention scenario (e.g., 2022 Round 1: Control 0.214 vs. Intervention 0.176), suggesting
that flower strips may not have the potential to significantly enhance pest control in this region.
Intervention show a strong positive impact on Habitat provision, with scores more than
doubling (+134%) in some cases (e.g., 2022 Round 1: Control 0.164 vs. Intervention 0.359).
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In the Spanish and Portugues CSAs the average trends in potential ecosystem service
supply resulting from the upscaling process are very similar for the three considered
ecosystem services. Spain (ES). Under the intervention scenarios, Pollination service
significantly results in higher potential scores, especially in round 2 of 2022, with relative
increases of 221 (Control 0.107 vs. Intervention 0.345) and 555% (Control 0.03 vs.
Intervention 0.191) in Guadalquivida and Alentejo respectively. In both CSAs, average the
scores for Pest Control are nearly identical between control and intervention plots, indicating
minimal impact from the interventions. In the Spanish CSA, the increase in Habitat Provision
linked to the intervention is about 10% higher than that observed in the Portuguese CSA (
23% vs. 14% over two rounds of the two years); in both cases though the relative increase
due to the intervention is more evident in the first year, with very similar values for both rounds.
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Figure 75. Average ecosystem services scores indicators in the five EBAs for the two scenarios
in 2022 and 2023 and yearly relative differences (Rl) due to the biodiversity management
intervention (C: Control; | : Intervention)

In the Dutch CSA the average gain in potential Pollination service supply over the two rounds
of the years of observation was ca. 65%, with the largest relative increase (+165%) in 2022
Round 1 (Control 0.141 vs. Intervention 0.373). As for Pest Control, results for the intervention
scenario slightly outperform control, but the differences are small (average relative increase
ca 13%). Slightly lower and very similar over the two rounds of the two years of observations
is the average relative increase observed under the intervention scenarios for the Habitat
Provisioning service, ranging from 7 to 8%.

In the Swiss CSA Pollination services show consistent improvements under the intervention
scenario, with the largest relative increase over the control scenario (+110%) in 2022 round 1
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(Control 0.117 vs. Intervention 0.246). Average scores for the Pest Control regulating service
are similar between control and intervention scenario, with minor improvements in the latter
(ca 8%). As for the Habitat provisioning service, the interventions scenario has a strong
positive impact, with the largest relative increase (+61%) observed in 2023 Round 1 (Control
0.32 vs. Intervention 0.52).

6 Conclusions and outlook

The outcomes of the spatiotemporal modelling of the biodiversity indicators collected in the
five EBAs considered by T2.7 allowed for assessing the potential gains in biodiversity
stemming from the implementation of biodiversity management practices at field level and to
upscale them at landscape level under different environmental and farming conditions. It was
made evident that the five biodiversity indicators respond differently to the implementation of
the interventions: results highlighted that the biodiversity management interventions are highly
effective at promoting wild bees abundance and diversity, and vascular plant species diversity,
enhancing then pollination regulating services and habitat provision service, but they have in
all cases limited impact on spiders communities, and then on pest control regulating service.

As expected, the impact of interventions varies by CSA, very likely due to co-occurring
differences in environmental conditions, crop types, management practices, and local
biodiversity. The most profound impacts are observed in the most intensive agricultural
systems, i.e., the intensive orchards of stone fruits in Andalucia and of olive trees in Alentejo,
while the occurrence of organic farms and of more extensive agricultural farming systems
result in moderate improvement of biodiversity indicators and related ecosystem services, as
in the Dutch and the Hungarian CSAs.

Results highlighted also a marked seasonality effect on biodiversity indicators and on the
related ecosystem services, with opposite trends depending on the regional climate patterns:
in the EBAs of central continental Europe, biodiversity indicators and ecosystem services
scores increase in late spring (round 2), while the opposite is observed in the EBAs of the
southern Iberian Peninsula, where biodiversity scores and ecosystem services were always
higher in early spring (round 1), highlighting the importance of timing for monitoring and
intervention effectiveness. Furthermore the severe drought conditions observed in 2022 were
coupled with a greater impact of the intervention with respect to the control compared to 2023,
suggesting that such interventions could also play a role in mitigating the stress induced by
the increased occurrence of extreme events which is a distinctive feature of the current climate
crisis.

The predictive models presented in this report are entirely data-driven and, as such, they are
assumptions-free, differently from mechanist models. As the data collected at field level in the
field EBAs were processed separately for each EBA, the calibrated models stemming from
such data are necessarily local specific. The estimated biodiversity increase depends then
entirely on the observed data at local field scale and on the strength of their relationships with
the set of predictor covariates used for the upscaling at landscape scale. The robustness of
the models and the reliability of the estimates are moderate to good, depending on the
accuracy of the spatial regression calibrated on available observations on the different EBAs.
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As for the possible applications of the predictive models, each of them was calibrated on a set
of local observations and predictors and, as such, should be used locally at field and/or at
landscape scale to assess the potential gains or loss in term of biodiversity indicators under a
business as usual scenario or under a scenario which foresees the implementation of
biodiversity-friendly management options such as those implemented in the SHOWCASE
EBAs. The approach has the potential to provide predictions for specific reference periods,
either in the future and in the past, given the availability of time variant predictors from remote
sensing. Furthermore, the mapping outputs have the potential to improve the implementation
of biodiversity management strategies through enhanced spatial targeting, as they provide
spatially explicit information about the location of hot and cold spots for biodiversity across a
region.

The methodological approach though can be tailored to any case study area and to any scale
provided adequate input data (observed biodiversity indicators) and predictors (spatial
covariates) are available. As such, the approach could be implemented across EU, but if the
goal would be to provide estimates at continental scale the calibration data set should be
representative of the variability encountered at field scale over the agricultural lands across
the whole EU, which is not the case for the SHOWCASE EBAs. Another data limitation for
modelling applications stems from the fact that in the SHOWCASE EBAs only two scenarios
were confronted, i.e. the control (or business as usual) and the intervention, making it not
possible to detect non-linear behaviour or saturation effects in response to the treatment
neither at field nor at landscape scale.

The results of Task 2.7 illustrated in this Deliverable can be linked to T2.3 to provide additional
arguments to raise and reinforce biodiversity awareness among different types of farmers that
are adopting biodiversity-enhancing management practices. In this respect T2.7 outcomes
can elucidate biodiversity patterns beyond the farm level in a broader context at a landscape
or regional level, besides providing insights into the potential biodiversity gain resulting from
biodiversity-enhancing management practices in the specific context of each CSA.

Likewise, T2.7 outcomes are currently contributing to the integration of the spatial modelling
with the economic analysis of Task 2.8 to elucidate the impact and the interconnection of
incentive design on biodiversity management efficiency at landscape scale. More in detail, the
cost analysis integration with the biodiversity drivers and gains at landscape scale is being
carried out in the intensive stone-fruit orchards of the Guadalquivir River Valley, Andalucia,
Spain. Building upon T2.7 outcomes for the Spanish CSA, the joint approach developed with
T2.8 aims to the integration of an economic analysis, incorporating a cost-opportunity
estimation framework to assess how different incentive structures influence farmer
participation and conservation effectiveness. The allocation of the biodiversity management
intervention changes when economic feasibility is introduced, as cost-related constraints
impact where farmers are likely to adopt biodiversity-friendly practices. Farm management
data, including production and additional costs, have been upscaled to the landscape scale
highlighting their relationships with biodiversity indicators for pollinators and vascular plants.
Preliminary findings indicate that the additional costs of implementing flower strips far exceed
the payments provided under current flat-rate AES, making such interventions economically
unfeasible under existing subsidy structures.

Finally, the outcomes of Task 2.7 can also contribute to elucidating spatial biodiversity patterns
and temporal dynamics at the level of individual EBAs in the framework of the ongoing
discussions with each multi-actor community and serve as a basis for further improvements



122 | Page D2.7: Multiscale spatiotemporal modelling of biodiversity indicators

of the biodiversity innovations as foreseen in Task 3.2, as well as effectively contribute to
providing communication and policy recommendation material for WP4.
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Appendix. A Spatiotemporal maps of regulating ecosystem services
in the five CSAs

A.1. Hungarian Case Study Area

Pollination
2023 Ri
Intervention

Pollination
2022 R1
Intervention

Pollination
2023 R1
Control

Pollination
2022 R1
Control

B 000 B 000 [ 0.00 B 0.00
Eloio Ho1o [ 0.10 [ o.10
Jo20 Jo2o o0 o020
Jo30 CJo3o [Jo30 [lo.30
Jo4o CJo4o [Jo40 [10.40
Joso Joso Joso Joso
Jos0 [Joso [Jo0.60 loeo
oo o7o o7 o.70
Joso [Closo Joso [loso
I 050 o9 [ 0.90 o9
100 B 100 B 1.00 . 1.00
e
it 3 i
e
Pollination Pollination Pollination Pollination
2022 R2 2022 R2 2023 R2 2023 R2
Control Intervesntion Control Intervention
[ o0.00 B 0.00 9 0.00 B 0.00
oo = o.10 B o.10 [ o0.10
o.20 [do20 [Jo.20 o2
CJo3o Jo30 o030 o030
o0 Jo40 Jo.40 CJo4o
[Jos0 loso [Joso Joso
L1060 060 o060 Joso
oo oo o7 o7
[ 0.80 0.80 [ o.80 oso
(]

[ 0.90 B 050 B 0.90 B3 090
B 1.00 B 100 B 100 B 1.00

Figure 1.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (top row) and round 2
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 1.A: Pollination indicator raster statistics and relative changes with respect to the baseline
and to the control of each round.

Indicator year r treat Poll mean median  stdev min max  Rel change baseline Rel ChangeT
Pollination 2022 r1 control 0.128 0.094 0.133 0.000 1.000 -

Pollination 2022 r1intervention 0.241 0.248 0.160 0.000 1.000 0.88 0.88
Pollination 2022 r2 control 0.231 0.215 0.168 0.000 1.000 0.80

Pollination 2022 r2intervention 0.350 0.349 0.157 0.000 1.000 1.73 0.52
Pollination 2023 r1 control 0.136 0.091 0.140 0.000 1.000 0.06

Pollination 2023 r1intervention 0.261 0.255 0.154 0.000 1.000 1.04 0.92
Pollination 2023 r2 control 0.281 0.293 0.173 0.000 1.000 1.19

Pollination 2023 r2intervention 0.392 0.417 0.166 0.000 1.000 2.06 0.40

Average changes 111 0.68
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Figure 2.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (top row) and round 2
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 2.A: Pest Control indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Indicator year r treat PestCtrl mean median  stdev min max Rel changebaseline Rel ChangeT
Pest Control 2022 r1 control 0.214 0.200 0.121 0.000 1.000 -

Pest Control 2022 r1 interventior 0.176 0.159 0.112 0.000 1.000 -0.18 -0.18
Pest Control 2022 r2 control 0.548 0.531 0.175 0.000 1.000 1.56

Pest Control 2022 r2 interventior 0.521 0.499 0.184 0.000 1.000 1.44 -0.05
Pest Control 2023 r1 control 0.155 0.140 0.089 0.000 1.000 -0.28

Pest Control 2023 r1 interventior 0.130 0.116 0.078 0.000 1.000 -0.39 -0.16
Pest Control 2023 r2 control 0.407 0.386 0.159 0.000 1.000 0.90

Pest Control 2023 r2 interventior 0.377 0.354 0.164 0.000 1.000 0.76 -0.07

Average changes 0.55 -0.12
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Table 3.A: Habitat Provision indicator raster statistics and relative changes with respect to the

baseline and to the control of each round.

Indicator year r treat Habitatmean median stdev min max Relchange baseline Rel ChangeT

Habitat 2022 r1 control 0.164 0.145 0.154 0.000 1.000 -

Habitat 2022 r1intervention 0.359 0.373 0.197 0.000 1.000 1.19 1.19
Habitat 2022 r2 control 0.270 0.227 0.223 0.000 1.000 0.65

Habitat 2022 r2 intervention 0.481 0.455 0.210 0.000 1.000 1.93 0.78
Habitat 2023 r1 control 0.155 0.143 0.127 0.000 1.000 -0.05

Habitat 2023 r1intervention 0.363 0.371 0.160 0.000 1.000 1.21 1.34
Habitat 2023 r2 control 0.245 0.249 0.159 0.000 1.000 0.49

Habitat 2023 r2 intervention 0.460 0.477 0.178 0.000 1.000 1.81 0.88
Average changes 1.03 1.05

Table 4.A: Summary raster statistics and relative changes in estimated ES scores due to
intervention with respect to the control in the two years of observations in the Hungarian CSA.

Average Pollmean median stdev min max Avg. Rellncr.
C2022 0.179 0.158 0.127 0.000 1.000

C2023 0.208 0.198 0.137 0.000 1.000

C 0.194 0.178 0.116 0.000 1.000

12022 0.296 0.295 0.135 0.000 1.000 0.648
12023 0.326 0.333 0.142 0.000 1.000 0.567

I 0.311 0.309 0.123 0.000 1.000 0.605
Average PestCtrl mean median stdev min max Avg. RelIncr.
C2022 0.381 0.381 0.118 0.000 1.000

C2023 0.281 0.269 0.104 0.000 1.000

C 0.331 0.330 0.098 0.000 1.000

12022 0.348 0.344 0.118 0.000 1.000 -0.086
12023 0.254 0.241 0.102 0.000 1.000 -0.097

I 0.301 0.299 0.096 0.000 1.000 -0.090
Average Habitatmean median Avg. Rel Incr.
C2022 0.217 0.192 0.152 0.000 1.000

C2023 0.200 0.186 0.118 0.000 1.000

C 0.209 0.197 0.113 0.000 1.000

12022 0.420 0.417 0.168 0.000 1.000 0.934
12023 0.412 0.413 0.142 0.000 1.000 1.057

I 0.416 0.416 0.132 0.000 1.000 0.993
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A.2. Spanish Case Study Area

)

iy

Figure 3.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (1%t and 3™ row) and
round 2 (2" and 4% row) for 2022 (15t and 2" row) and 2023 (3™ and 4 row); C: Control, I:
Intervention.

Table 5.A: Pollination indicator raster statistics and relative changes with respect to the baseline
and to the control of each round.

Pollination 2022 r1 control 0.304 0.303 0.133 0.000 1.000 -

Pollination 2022r1intervention 0.533 0.539 0.126 0.000 1.000 0.75 0.75
Pollination 2022 r2 control 0.107 0.091 0.099 0.000 1.000 -0.65

Pollination 2022 r2intervention 0.345 0.347 0.114 0.000 1.000 0.13 2.21
Pollination 2023 r1 control 0.388 0.390 0.117 0.000 1.000 0.28

Pollination 2023 r1intervention 0.594 0.598 0.106 0.000 1.000 0.95 0.53
Pollination 2023 r2 control 0.180 0.169 0.097 0.000 1.000 -0.41

Pollination 2023 r2intervention 0.396 0.395 0.108 0.000 1.000 0.30 1.19

Average changes 0.19 1.17
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Figure 4.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (1%t and 3" row) and
round 2 (2" and 4% row) for 2022 (15t and 2" row) and 2023 (3™ and 4" row); C: Control, I

Intervention.

Table 6.A: Pest Control indicator raster statistics and relative changes with respect to the

baseline and to the control of each round.

Pest Control 2022 r1 control 0.253 0.244 0.144 0.000 1.000 -

Pest Control 2022 r1intervention 0.249 0.238 0.141 0.000 1.000 -0.02 -0.02
Pest Control 2022 r2 control 0.168 0.151 0.126 0.000 1.000 -0.34

Pest Control 2022 r2 intervention 0.165 0.146 0.123 0.000 1.000 -0.35 -0.02
Pest Control 2023 r1 control 0.316 0.313 0.138 0.000 1.000 0.25

Pest Control 2023 rlintervention 0.319 0.317 0.139 0.000 1.000 0.26 0.01
Pest Control 2023 r2 control 0.173 0.163 0.126 0.000 1.000 -0.32

Pest Control 2023 r2 intervention 0.183 0.174 0.127 0.000 1.000 -0.28 0.06
Average changes -0.11 0.01
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Table 7.A: Habitat provision indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Indicator year r treat Habitatmean median stdev min max Relchangebaseline Rel ChangeT

Habitat 2022 r1 control 0.300 0.284 0.068 0.000 0.837 -

Habitat 2022 r1intervention 0.393 0.377 0.068 0.012 0.930 0.31 0.31
Habitat 2022 r2 control 0.333 0.317 0.068 0.000 0.866 0.11

Habitat 2022 r2 intervention 0.426 0.410 0.068 0.006 0.959 0.42 0.28
Habitat 2023 r1 control 0.546 0.531 0.069 0.000 1.000 0.82

Habitat 2023 r1intervention 0.639 0.624 0.069 0.081 1.000 1.13 0.17
Habitat 2023 r2 control 0.562 0.547 0.068 0.038 1.000 0.87

Habitat 2023 r2 intervention 0.655 0.640 0.068 0.132 1.000 1.18 0.17
Average changes 0.69 0.23

Table 8.A: Summary raster statistics and relative changes in estimated ES scores due to
intervention with respect to the control in the two years of observations in the Spanish CSA.

Average Pollmean median stdev min max Avg. RelIncr.

C2022 0.206 0.1956 0.110 0.000 1.000
C2023 0.284 0.280 0.101 0.000 1.000
C 0.245 0.238 0.101 0.000 1.000
12022 0.439 0.441 0.114 0.000 1.000 1.131
12023 0.495 0.497 0.101 0.000 1.000 0.740
I 0.467 0.468 0.103 0.000 1.000 0.904

Average PestCirl mean median stdev min max Avg. RelIncr.

C2022 0.210 0.198 0.131 0.000 1.000

C2023 0.244 0.238 0.128 0.000 1.000

C 0.227 0.218 0.126 0.000 1.000

12022 0.207 0.192 0.129 0.000 1.000 -0.017
12023 0.251 0.245 0.129 0.000 1.000 0.027
I 0.229 0.219 0.125 0.000 1.000 0.007
Average Habitatmean median stdev min max Avg. RelIncr.
C2022 0.317 0.300 0.066 0.000 0.841

C2023 0.554 0.538 0.067 0.025 1.000

C 0.435 0.418 0.066 0.086 0.921

12022 0.410 0.393 0.066 0.048 0.935 0.294
12023 0.647 0.631 0.067 0.118 1.000 0.168

I 0.528 0.511 0.066 0.159 0.967 0.214
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A.3. Portuguese Case Study Area

Figure 5.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (top row) and round 2
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 9.A: Pollination indicator raster statistics and relative changes with respect to the baseline
and to the control of each round.

Pollination 2022r1 control 0.232 0.216 0.159 0.000 1.000 -

Pollination 2022r1intervention 0.481 0.479 0.158 0.000 1.000 1.07 1.07
Pollination 2022 r2 control 0.029 0.000 0.070 0.000 1.000 -0.87

Pollination 2022 r2intervention 0.191 0.171 0.147 0.000 1.000 -0.18 5.55
Pollination 2023 r1 control 0.264 0.248 0.150 0.000 1.000 0.14

Pollination 2023 r1intervention 0.501 0.496 0.150 0.000 1.000 1.15 0.89
Pollination 2023r2 control 0.288 0.267 0.181 0.000 1.000 0.24

Pollination 2023 r2intervention 0.498 0.498 0.181 0.000 1.000 1.14 0.73

Average changes 0.38 2.06
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Figure 6.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (top row) and round 2
(bottom row) for 2022 (left) and 2023 (right); C: Control, I: Intervention.

Table 10.A: Pest Control indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Pest Control 2022 r1 control 0.283 0.285 0.132 0.000 1.000 -

Pest Control 2022 r1intervention 0.279 0.279 0.130 0.000 1.000 -0.01 -0.01
Pest Control 2022 r2 control 0.172 0.161 0.113 0.000 1.000 -0.39

Pest Control 2022 r2 intervention 0.172 0.160 0.111 0.000 1.000 -0.39 0.00
Pest Control 2023 r1 control 0.317 0.320 0.133 0.000 1.000 0.12

Pest Control 2023 rlintervention 0.313 0.316 0.132 0.000 1.000 0.11 -0.01
Pest Control 2023 r2 control 0.192 0.188 0.122 0.000 1.000 -0.32

Pest Control 2023 r2 intervention 0.190 0.185 0.121 0.000 1.000 -0.33 -0.01

Average changes -0.17 -0.01
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Table 11.A: Habitat Provision indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Indicator year r treat Habitatmean median stdev min max Relchangebaseline Rel ChangeT

Habitat 2022 r1 control 0.540 0.533 0.109 0.040 1.000 -

Habitat 2022 r1intervention 0.633 0.626 0.109 0.133 1.000 0.17 0.17
Habitat 2022 r2 control 0.544 0.537 0.110 0.023 1.000 0.01

Habitat 2022 r2 intervention 0.637 0.630 0.110 0.116 1.000 0.18 0.17
Habitat 2023 r1 control 0.763 0.757 0.105 0.247 1.000 0.41

Habitat 2023 r1intervention 0.853 0.850 0.100 0.340 1.000 0.58 0.12
Habitat 2023 r2 control 0.775 0.768 0.107 0.257 1.000 0.44

Habitat 2023 r2 intervention 0.863 0.861 0.100 0.350 1.000 0.60 0.11
Average changes 0.578 0.34 0.14

Table 12.A: Summary raster statistics and relative changes in estimated ES scores due to
intervention with respect to the control in the two years of observations in the Portuguese CSA.

Average Poll mean median stdev min max Avg. Rel. Incr.

C2022 0.131 0.111 0.106 0.000 1.000
C2023 0.276 0.262 0.146 0.000 1.000
C 0.203 0.187 0.114 0.000 1.000
12022 0.336 0.323 0.145 0.000 1.000 1.570
12023 0.499 0.500 0.148 0.000 1.000 0.809
I 0.418 0.411 0.134 0.000 1.000 1.054

Average PestCtrlmean median stdev min max Avg. Rel. Incr.

C2022 0.225 0.220 0.118 0.000 1.000

C2023 0.255 0.254 0.125 0.000 1.000

C 0.240 0.238 0.117 0.000 1.000

12022 0.226 0.220 0.117 0.000 1.000 0.002
12023 0.251 0.250 0.124 0.000 1.000 -0.013
| 0.251 0.250 0.124 0.000 1.000 0.048
Average Habitatmean median stdev min max Avg. Rel. Incr.
C2022 0.542 0.535 0.109 0.036 1.000

C2023 0.769 0.763 0.106 0.261 1.000

C 0.655 0.649 0.106 0.173 1.000

12022 0.635 0.628 0.109 0.129 1.000 0.172
12023 0.858 0.856 0.100 0.354 1.000 0.116

I 0.747 0.742 0.103 0.266 1.000 0.139
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A.5. Dutch Case Study Area

Figure 7.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (1%t and 3™ row) and
round 2 (2" and 4% row) for 2022 (15t and 2" row) and 2023 (3™ and 4 row); C: Control, I:
Intervention.

Table 13.A: Pollination indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Pollination 2022r1 control 0.141 0.136 0.056 0.000 1.000 -
Pollination 2022r1intervention 0.373 0.370 0.066 0.000 1.000 1.64 1.64
Pollination 2022 r2 control 0.406 0.404 0.068 0.000 1.000 1.87
Pollination 2022 r2intervention 0.451 0.448 0.075 0.000 1.000 2.19 0.11
Pollination 2023r1 control 0.232 0.225 0.078 0.000 1.000 0.64
Pollination 2023 r1intervention 0.403 0.397 0.073 0.000 1.000 1.85 0.74
Pollination 2023 r2 control 0.402 0.401 0.064 0.000 1.000 1.84
Pollination 2023 r2intervention 0.444 0.443 0.071 0.000 1.000 2.14 0.10

Average changes 1.74 0.65
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Figure 8.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (1%t and 3" row) and
round 2 (2" and 4% row) for 2022 (15t and 2" row) and 2023 (3™ and 4 row); C: Control, I:
Intervention.

Table 14.A: Pollination indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Pest Control 2022 r1 control 0.267 0.229 0.189 0.000 1.000 -

Pest Control 2022 r1intervention 0.312 0.280 0.182 0.000 1.000 0.17 0.17
Pest Control 2022 r2 control 0.383 0.374 0.179 0.000 1.000 0.43

Pest Control 2022 r2 intervention 0.415 0.408 0.172 0.000 1.000 0.55 0.08
Pest Control 2023 r1 control 0.246 0.206 0.178 0.000 1.000 -0.08

Pest Control 2023 r1intervention 0.288 0.254 0.172 0.000 1.000 0.08 0.17
Pest Control 2023 r2 control 0.391 0.380 0.187 0.000 1.000 0.46

Pest Control 2023 r2 intervention 0.424 0.415 0.179 0.000 1.000 0.59 0.08

Average changes 0.32 0.13
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Table 15.A: Habitat Provision indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Indicator year r treat Habitatmean median stdev min max Relchangebaseline Rel ChangeT

Habitat 2022 r1 control 0.538 0.536 0.254 0.000 1.000 -

Habitat 2022 r1intervention 0.580 0.582 0.250 0.000 1.000 0.08 0.08
Habitat 2022 r2 control 0.555 0.541 0.236 0.000 1.000 0.03

Habitat 2022 r2 intervention 0.598 0.586 0.231 0.000 1.000 0.11 0.08
Habitat 2023 r1 control 0.553 0.548 0.256 0.000 1.000 0.03

Habitat 2023 r1intervention 0.595 0.594 0.251 0.000 1.000 0.11 0.08
Habitat 2023 r2 control 0.529 0.519 0.244 0.000 1.000 -0.02

Habitat 2023 r2 intervention 0.572 0.565 0.240 0.000 1.000 0.06 0.08
Average changes 0.06 0.08

Table 16.A: Summary raster statistics and relative changes in estimated ES scores due to
intervention with respect to the control in the two years of observations in the Dutch CSA.

Average Poll mean median stdev min max Avg. Rel. Incr.

C2022 0.274 0.271 0.055 0.000 1.000
C2023 0.317 0.316 0.067 0.000 1.000
C 0.295 0.293 0.056 0.000 1.000
12022 0.412 0.411 0.062 0.000 1.000 0.503
12023 0.424 0.424 0.068 0.000 1.000 0.336
I 0.418 0.417 0.059 0.000 1.000 0.413

Average PestCtrlmean median stdev min max Avg. Rel. Incr.

C2022 0.325 0.303 0.177 0.000 0.975

C2023 0.318 0.294 0.179 0.000 1.000

C 0.322 0.302 0.172 0.000 0.971

12022 0.364 0.346 0.171 0.000 0.977 0.119
12023 0.356 0.335 0.173 0.000 1.000 0.118
| 0.360 0.343 0.166 0.000 0.973 0.118
Average Habitatmean median stdev i Avg. Rel. Incr.
C2022 0.546 0.538 0.231 0.000 1.000

C2023 0.541 0.536 0.244 0.000 1.000

C 0.544 0.535 0.223 0.000 1.000

12022 0.589 0.583 0.227 0.000 1.000 0.0778
12023 0.583 0.582 0.240 0.000 1.000 0.0784

I 0.586 0.580 0.218 0.000 1.000 0.0781



D2.7: Multiscale spatiotemporal modelling of biodiversity indicators 145 | Page

A.6. Swiss Case Study Area
i

Figure 9.A: Predicted Pollination indicator maps (res. 10 m) for round 1 (15t and 3™ row) and
round 2 (2" and 4% row) for 2022 (1%t and 2" row) and 2023 (3" and 4' row); C: Control, I:
Intervention.

Table 17.A: Pollination indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Pollination 2022r1 control 0.117 0.100 0.104 0.000 1.000 -

Pollination 2022rlintervention 0.246 0.243 0.139 0.000 1.000 1.09 1.09
Pollination 2022r2 control 0.112 0.059 0.136 0.000 1.000 -0.05

Pollination 2022 r2intervention 0.229 0.218 0.161 0.000 1.000 0.95 1.04
Pollination 2023 r1 control 0.153 0.080 0.192 0.000 1.000 0.31

Pollination 2023 rlintervention 0.261 0.215 0.232 0.000 1.000 1.23 0.71
Pollination 2023 r2 control 0.141 0.090 0.156 0.000 1.000 0.21

Pollination 2023 r2intervention 0.274 0.265 0.175 0.000 1.000 1.34 0.94

Average changes 0.73 0.95
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Figure 10.A: Predicted Pest Control indicator maps (res. 10 m) for round 1 (15t and 3" row) and
round 2 (2" and 4% row) for 2022 (15t and 2" row) and 2023 (3™ and 4 row); C: Control, I:
Intervention.

Table 18.A: Pest Control indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Pest Control 2022 r1 control 0.255 0.227 0.182 0.000 1.000 -
Pest Control 2022 r1 intervention 0.276 0.250 0.182 0.000 1.000 0.08 0.08
Pest Control 2022 r2 control 0.260 0.237 0.170 0.000 1.000 0.02
Pest Control 2022 r2 intervention 0.281 0.261 0.171 0.000 1.000 0.10 0.08
Pest Control 2023 r1 control 0.280 0.250 0.198 0.000 1.000 0.10
Pest Control 2023 rl intervention 0.300 0.273 0.199 0.000 1.000 0.18 0.07
Pest Control 2023 r2 control 0.273 0.253 0.169 0.000 1.000 0.07
Pest Control 2023 r2 intervention 0.295 0.277 0.168 0.000 1.000 0.16 0.08

Average changes 0.10 0.08
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Table 19.A: Habitat Provision indicator raster statistics and relative changes with respect to the
baseline and to the control of each round.

Indicator year r treat Habitatmean median stdev min max Relchange baseline Rel ChangeT

Habitat 2022 r1 control 0.330 0.256 0.298 0.000 1.000 -

Habitat 2022 r1intervention 0.528 0.491 0.271 0.000 1.000 0.60 0.60

Habitat 2022 r2 control 0.555 0.523 0.266 0.000 1.000 0.68

Habitat 2022 r2 intervention 0.746 0.757 0.216 0.000 1.000 1.26 0.34

Habitat 2023 r1 control 0.323 0.246 0.300 0.000 1.000 -0.02

Habitat 2023 r1intervention 0.520 0.480 0.274 0.000 1.000 0.58 0.61

Habitat 2023 r2 control 0.564 0.532 0.264 0.000 1.000 0.71

Habitat 2023 r2 intervention 0.753 0.767 0.213 0.000 1.000 1.28 0.34
Average changes 0.73 0.47

Table 20.A: Summary raster statistics and relative changes in estimated ES scores due to
intervention with respect to the control in the two years of observations in the Swiss CSA.

Average Poll mean median stdev min max Avg. Rel. Incr.

C2022 0.115 0.069 0.109 0.000 0.791
C2023 0.147 0.110 0.142 0.000 0.925
C 0.131 0.103 0.118 0.000 0.772
12022 0.237 0.232 0.139 0.000 0.877 1.066
12023 0.266 0.249 0.170 0.000 0.956 0.818
I 0.252 0.244 0.148 0.000 0.856 0.927

Average PestCirl mean median stdev min max Avg. Rel. Incr.

C2022 0.258 0.303 0.177 0.000 0.975

C2023 0.277 0.294 0.179 0.000 1.000

C 0.267 0.302 0.172 0.000 0.971

12022 0.278 0.346 0.171 0.000 0.977 0.081
12023 0.297 0.335 0.173 0.000 1.000 0.075
| 0.288 0.343 0.166 0.000 0.973 0.078
Average Habitatmean median stdev min max Avg. Rel. Incr.
C2022 0.443 0.389 0.278 0.000 1.000

C2023 0.453 0.389 0.280 0.000 1.000

C 0.452 0.389 0.278 0.000 1.000

12022 0.637 0.624 0.240 0.000 1.000 0.4391
12023 0.645 0.623 0.240 0.000 1.000 0.4251

I 0.637 0.623 0.239 0.000 1.000 0.4075



