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Abstract 
The decline in global biodiversity, particularly in agricultural landscapes, poses a significant 

threat to ecosystems and human well-being. Bees, essential pollinators, have experienced a 

marked decline, impacting food security and ecosystem stability. To address the challenges of 

large-scale bee surveying, we explore, through a multi-faceted, multi-scale approach the 

relationship between habitat/landscape metrics de- rived from remote sensing information 

and pollinator diversity within different Experimental Biodiversity Areas (EBAs) in The 

Netherlands. At the local scale, we made use of UAV images to assess flower cover as a proxy 

for bee abundance and test vegetation grassland het- erogeneity as a proxy for flower and bee 

diversity. At the regional scale, we employed Sentinel-2 data for habitat classification to link 

habitat diversity with pollinator diversity. Our results indicate that RGB UAV images, coupled 

with machine learning algorithms like Random Forest and Neural Network, effectively 

estimate flower cover, showing positive correlations with in-situ bee abundance, species 

richness, and diversity. The choice of algorithm and spatial resolution plays a crucial role in 

capturing accurate ecological dynamics. Additionally, UAV-derived data on vegetation height 

heterogeneity, assessed through different indices and resolutions, exhibit positive correlations 

with flower and bee diversity, emphasizing the importance of habitat structure. At the regional 

scale, the Random Forest classification of forested areas using Sentinel-2 data reveals 

significant positive correlations with bee abundance and richness. This highlights the 

influence of forested habitats on shaping bee communities within EBAs. In summary, our task 

underscores how remote sensing technologies can propel ecological research forward, 

unraveling the intricate connections between habitat features and pollinator diversity. The 

fusion of local and regional data not only provides key insights into shaping conservation 

strategies but also enriches our comprehension of the intricate dynamics within the project 

EBAs. On a broader scale, our results aid in biodiversity assessment assisting stakeholders, 

(e.g., ecologists and farmers) for a better understand of biodiversity and ecological processes.
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1 Introduction 
The decline of global biodiversity poses a critical threat to both ecosystems 

and human well-being, with agricultural landscapes experiencing a 
particularly drastic reduction in biodiversity over the past decades [11, 23]. 
This decline, driven by factors like habitat fragmentation and intensified 
farming practices, has far-reaching consequences on ecosystem functioning 
[14]. Among the myriad species affected, bees, vital pollinators, have faced a 
marked decline in distribution, abundance, and richness at both national and 
local scales [30, 2]. This decline is attributed to habitat loss, fragmentation, 
climate change, and the loss of host plants [25]. Bees, in providing essential 
pollination services, play a pivotal role in the productivity of global food crops 
and the seed set of wild plants [12, 18]. This ecosystem service contributes 
significantly to worldwide food production, valued at over 150 billion euros 
annually [5, 6]. The decline of bee populations thus has profound implications 
for food security, biodiversity, and ecosystem stability. While mitigation 
measures and drivers of bee decline are increasingly understood, the actual 
extent of this decline, especially at large spatial scales, remains inadequately 
explored. Large-scale surveying of bees faces challenges due to the difficulty in 
species identification, making it less feasible for laypersons compared to 
standardized monitoring of butterflies [28]. Consequently, trends in bee 
abundance are often based on small-scale studies, underestimating population 
trends [2]. Standardized monitoring proposals in EU member states aim to 
address this gap [20]. However, due to the cost and coverage limitations of in-
situ monitoring, there is a need for complementary approaches. One such 
approach involves inferring trends in bee pollinators from trends in flower 
cover and species richness. 

Recent advancements in remote sensing and Earth observation offer 
promising avenues for large-scale biodiversity estimation [27, 22]. Satellite 
remote sensing (SRS) provides extensive coverage, ecological information for 
biodiversity estimation at broad scales [3], while Unmanned Aerial Vehicles 
(UAVs) equipped with optical cameras have emerged as a cost-effective 
solution for ecological purposes such as in the estimation of vegetation 
properties, species distribution, and invasive species mapping [7, 10, 1] at a 
local scale. 

In this context, our task employs a multi-faceted and multi-scale approach, 
integrating data from diverse remote sensing platforms to advance our 
understanding of biodiversity indicators for pollinator diversity. Specifically, 
we leverage the potential of remote sensing data at different scales, including 
UAV optical data for local assessments and Sentinel-2 data for regional 
analysis in order to assess biodiversity indicators for pollinator diversity 
within the Dutch Experimental Biodiversity Areas (EBAs).  
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These are the objectives of our task computed at different scales using different 
remote sensing data: 
 

• Local scale: assessing flower cover as a proxy for bee abundance using 
UAV images. In the first phase of our task, we focus on assessing flower 
cover as a proxy for bee abundance. The fundamental step involves 
utilizing images from a UAV and distinguishing flower pixels from non-
floral surfaces through differences in spectral signatures [8]. We opted for 
RGB images, given their cost-effectiveness, ready availability, and user-
friendly nature. RGB cameras, often integrated into commercial drones, 
provide a practical and easily reproducible approach for ecological 
classification analysis. 
 
• Local scale: testing vegetation grassland heterogeneity as a proxy for 
flower diversity and pollinator diversity using UAV data. In this second 
stage, we aim to explore whether vegetation grassland heterogeneity, 
assessed through optical RGB images and based on structure from 
motion analysis, can serve as a proxy for flower diversity and, 
consequently, bee diversity and abundance. 
 
• Regional scale: Habitat Classification using Sentinel-2 Data for Linking 
Habitat Diversity with Pollinator Diversity. The third objective involves 
utilizing satellite images, specifically from Sentinel-2 data, to classify 
different habitats (forest, agricultural areas, rivers, ponds, hedges). The 
goal is to establish connections between habitat diversity and pollinator 
diversity. This approach allows for a broader-scale analysis, providing 
valuable insights into the relationship between different landscapes and 
the presence of pollinators. 
 
• Regional scale: we aim to evaluate the Spectral Variation Hypothesis for 
estimating butterfly biodiversity through Sentinel-2 satellite data. This 
concept hypothesizes that variability in reflectance known as spectral 
heterogeneity (SH) or “spectral variability” of an area is an expression of 
spatial ecosystem heterogeneity and therefore related to species diversity. 
The fourth goal involves identifying a potential link between spectral 
diversity—quantified by the Rao’s Q heterogeneity index from Sentinel-2 
imagery—and butterfly species richness, which is obtained from citizen 
science data. This method facilitates an analysis on a wider scale, offering 
significant insights into how environmental diversity influences butterfly 
distribution. 
 

In summary, this task aims to adopt a multi-faceted and multi-scale approach, 
integrating data from diverse remote sensing platforms to advance our 
understanding of biodiversity indicators for pollinator diversity. The subsequent 
sections delve into the methodologies, results, and implications of each 
objective, contributing to the broader field of ecological research. 
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2 Methods 

2.1 Study area 
2.1.1 Bee biodiversity  

For the analysis related to bee biodiversity, we focused on an area that covered 
approximately 70 km2, with elevations ranging from 70 to 171 meters above sea 
level, situated in the southeast of the Netherlands near the village of Gulpen (Fig. 
1). Thirty grasslands, selected to encompass a spectrum of land use intensities—
ranging from nutrient-poor, biodiversity-rich semi-natural grasslands to 
intensively fertilized areas—were chosen to assess the proposed approach. The 
deliberate selection of semi-natural, extensively utilized, and intensively 
managed grasslands from diverse regions aims to minimize the spatial clustering 
of distinct grassland types. 
 
 

 
Figure 1: The study areas, situated in the Southeast of the Netherlands, are 
depicted in the map. Yellow dots mark the locations of the 30 transects 
within each study area (Basemap: Google Earth map as of August 2022). 

 
2.1.2 Butterfly biodiversity  

In the estimation of butterfly diversity, we focused on a bigger area, 
namely the whole Netherlands.  The butterfly biodiversity data were collected 
within the European Butterfly Monitoring Scheme (eBMS), a citizen science 
network initiated by Butterfly Conservation Europe in April 2016. Its purpose is 
to consolidate data from various European country schemes into a unified 
database. The management of this database is overseen by the Natural 
Environment Research Council (operating through the Centre for Ecology and 
Hydrology) to support research efforts.    
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Figure 2: The location of all the plots where the field data were collected 

 
 

2.2 Field data 
2.2.1 Bee data 

 

Each grassland was systematically surveyed using a transect measuring 150 by 1 
meter, subdivided into three sections of 50 meters each (Figure 3). The transects 
were strategically positioned from the edge to the center of the grassland, 
traversing elevational differences when present, to capture the heterogeneity 
within the grassland. Distinctive plates, clearly visible in drone imagery, marked 
the transects. To minimize the likelihood of sampling the same bee populations, 
adjacent transects were predominantly separated by distances exceeding 500 
meters (with a minimum separation of 435 meters). Studies have indicated that, 
although large-bodied bees like bumblebees can forage at distances of a few 
kilometers, their primary foraging range is within shorter distances 
(approximately 250-550 meters). Smaller wild bees tend to forage even closer 
[21]. Surveys of both bees and flowers were conducted along each transect. 
Transect walks, a standard method for studying plant-pollinator associations 
[29], were used to count wild bees and the honeybee (Apis mellifera). Two 
observers consistently conducted the surveys, counting all bees within a meter in 
front of them while walking along the transect for 15 minutes. This time 
excluded any handling time for caught specimens. For bee identification, 
specimens were either identified in the field using keys to the Dutch Apidae [4, 
16, 17] or collected for later identification in the lab. Stereo-microscopes were 
employed for identification, and expert consultation was sought when necessary. 
The surveys were conducted between May 12th and May 31st, 2021, from 10 a.m. 
to 5 p.m. under favorable weather conditions (dry, >50% sunny, and at least 15 
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degrees Celsius, with wind speed <2 Beaufort). The field-collected bee data were 
utilized to derive plot-level metrics, including bee abundance (total observed bee 
count), bee species richness (count of unique species), and Shannon’s H index 
[19] as an indicator of bee diversity. Flower surveys, following the method of 
Scheper et al. [24], were generally conducted on the same day as the bee surveys 
or, for logistical reasons, one or two days before or after. The number of open 
flowers of each species was recorded, and this information was used to calculate 
flower cover per transect. The calculation involved multiplying counts with 
species-specific estimates of flower size and summing over all observed 
flowering plant species [24]. 
 

 

Figure 3: Field data collection in the Dutch EBAs 
 

2.2.2 Butterfly data  
 

The field data collected, essential for the final comparison, are: length of the 
transect measured in meters (m), which includes only those transects of at least 
300 m because the location of shorter transects might be inaccurate and short 
transects are more prone to local bias; total species richness (Nspp) (from raw 
data) and species richness of each monitoring scheme in a given climate region, 
proportion of species on transect relative to species richness of the region 
(Nspp). This standardized richness was used as an alternative richness variable. 
Transects had variable lengths, from 300 to 1000m. 
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2.3 Remote Sensing Data 

2.3.1 Assessing Flower Cover as a Proxy for Bee Abundance using 
UAV Images 

To achieve this goal at a local scale, we utilized UAV optical data. The UAV data 
collection, conducted concurrently with the field data collection, utilized the 
"DJI Matrice 210 RTK" UAV model equipped with the RGB Zenmuse X5 camera 
(16.0 MP, 17.3 x 13.0 mm sensor) featuring an integrated RTK GPS (Figure 4). 
Images were captured with an 80% overlapping rate to generate the final 
orthomosaic, with UAV flights executed at an altitude of approximately 20 
meters above ground level. Employing the Agisoft Metashape Professional 
Edition software, a user-friendly workflow combining structure-from-motion 
and stereo-matching algorithms facilitated image alignment, dense point cloud 
assessment, digital elevation model (DEM) development, and orthomosaic 
construction. Key stages included feature extraction, sparse 3D point cloud 
creation, and automatic detection of Ground Control Points for precise 
georeferencing. The orthomosaic, exported as a GeoTIFF with a higher spatial 
resolution (around 0.5cm mean spatial resolution across 30 areas), played a 
crucial role in estimating flower cover. Additionally, variations in spatial 
resolution (1cm, 2cm, and 5cm) were explored to analyze their impact on flower 
cover estimation. 

 
2.3.2 Testing Vegetation Grassland Heterogeneity as a Proxy for 

Flower Diversity and Pollinator Diversity using UAV Data 
 

For this objective, conducted also at the local scale, the same UAV optical images of 
the previous objective were used. Conversely, the Agisoft Metashape Professional 
Edition software processed UAV images through three main stages: image alignment, 
dense point cloud creation, and digital elevation model inference. The procedures 
involved feature extraction, creating a sparse 3D point cloud, and automatically 
detecting Ground Control Point features for precise georeferencing. The dense point 
cloud, with a mean point density of 700 points/m2, was exported as a LAS file. Spatial 
resolutions for the Digital Surface Model (DSM) were derived at 10 cm, 25 cm, and 50 
cm using the "dsmtin" algorithm. This algorithm utilized Delaunay triangulation to 
form a triangular irregular network (TIN), which was then rasterized to create the 
DSM. The Digital Terrain Model (DTM) and Canopy Height Model (CHM) were 
derived from the same point cloud, providing a comprehensive representation of 
terrain and vegetation structure.
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Figure 4: UAV campaign in the Dutch EBA 

 
2.3.3 Habitat Classification using Sentinel-2 Data for Linking 

Habitat Diversity with Pollinator Diversity 
 

For the third objective, Sentinel-2 2A images (radiometrically calibrated and 
atmospherically corrected data, ensuring the accuracy of reflectance values), 
acquired through the Copernicus program were used. The selection of Sentinel-2 
data was driven by its higher spatial resolution (compared to, for example, 
Landsat images), offering higher accuracy in our analysis. We focused on specific 
bands with a 10-meter spatial resolution, including the red, blue, green, and near-
infrared (NIR) bands, to enhance spatial resolution for detailed habitat 
classification. Utilizing the calibrated and corrected Sentinel-2 2A images, a 
supervised classification approach was employed, leveraging machine learning 
algorithms (Random Forest) to discern and categorize different habitats based on 
their unique spectral signatures. 
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2.3.4 Testing the Spectral Variation Hypothesis for Butterfly 
biodiversity estimation 

For this objective we tested the Spectral Variation Hypothesis for the estimation 
of butterfly diversity. In particular we assessed the spectral heterogeneity 
through the Rao’s Q heterogeneity index, based on NDVI data derived from the 
Sentinel-2 images.  Since our objective was to investigate the potential 
correlation between field data and landscape heterogeneity for the years 2018, 
2019, and 2020 we used different Sentinel-2 images. We tested two different 
temporal approaches: one based on the use of a single image for the whole year 
(mean NDVI value from April to September) and one based on the use of four 
different images corresponding as the mean of the NDVI value for each season.  
 

2.4 Analyses 

2.4.1 Assessing Flower Cover as a Proxy for Bee Abundance using 
UAV Images 

In order to derive the information of flower cover from the UAV RGB images, 
we applied three machine learning algorithms: Random Forest (RF), Support 
Vector Machine (SVM), and Neural Network (NNET)—using the caret R 
package [26]. 

 
Random Forest (RF) RF, based on decision trees, effectively classifies 
flower cover using bootstrapped training subsets and a voting mechanism [15, 
9]. 

 
Support Vector Machine (SVM) SVM, a supervised learning model, 
classifies flower cover using a kernel function to separate classes in an N- 
dimensional space [15]. 

 
Neural Network (NNET) NNET, mimicking the human brain, captures 
relationships in data through connected processors [13]. Training and testing 
data, randomly selected within polygons, underwent a 10-fold cross-validation 
method. Performance metrics (Accuracy, Kappa, Precision, Sensitivity, 
Specificity, Negative Predictive Value, Positive Predictive Value, Bal anced 
Accuracy, and F1) evaluated model validity and reliability. Successive 
correlation analyses explored the relationships between UAV image flower 
cover estimated with different machine learning methods at different spatial 
resolutions and in-situ data (flower cover, bee abundance, species richness, 
and diversity). This analysis informs the choice of algorithms and resolutions 
in capturing these relationships. 
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2.4.2 Testing Vegetation Grassland Heterogeneity as a Proxy for 
Flower Diversity and Pollinator Diversity using UAV Data 

For the UAVs derived CHMs (at 10cm, 25cm and 50cm), the Vegetation 
Height Heterogeneity (HH) was calculated using the following heterogeneity 
indices. 

 
Rao’s Q Index: Originally devised by Rao and later recommended by 
Botta-Dukát for functional diversity in ecology, it was adapted as a hetero- 
geneity index for remote sensing by Rocchini et al. The formula used is: 

 

 
where Q is Rao’s Q index, pI and pj represents relative abundance, and dij is 
the distance between pixels i and j.  

 
Coefficient of Variation (CV): Widely used in ecological studies, CV is 
calculated as SD/x,  where SD is the standard deviation, and x is the mean 
of pixel values. 

 
Berger-Parker Index: A measure of dominance, calculated as nmax/N, 
where nmax is the abundance of the most dominant pixel and N is the total 
abun- dance. 

 
Simpson’s D Index: A diversity assessment measure applied to remote 

sensing data, calculated as ∑ 𝑝𝑖
2𝑛

𝑖=1  where D Is the Simpson index, n is the 
total number of pixels , and pi is the relative abundance of a pixel value. The 
derived HH, calculated for each CHMs(at 10cm,  25cm, 50cm) using each 
heterogeneity indices was then correlated to vegetation species richness and 
bee species richness / abundance.  

 
 

2.4.3 Habitat Classification using Sentinel-2 Data for Linking 
Habitat Diversity with Pollinator Diversity 

For our third objective, we harnessed the potential of Sentinel-2 satellite 
images. Our aim was to classify diverse habitats within a 250-meter buffer around 
our central EBAs using a Random Forest classification approach. To train our 
classification model, we drew distinct polygons within the 250- meter buffer, 
representing four major classes: linear elements (e.g., linear forests, hedges), 
forests, urban areas, and agricultural fields. The model was trained using these 
polygons to recognize and classify the different land cover types. The classification 
process utilized a RF algorithm, a robust and versatile machine learning approach. 
This method leverages an ensemble of decision trees, each contributing to the final 
classification through a voting mechanism. Post-classification, we correlated the 
areas of each identified class with bee diversity and abundance within each EBA. 
This analysis aims to unveil po tential relationships between habitat types and the 
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diversity and abundance of bee populations, providing valuable insights into the 
ecological dynamics of these areas. 

 
2.4.4 Testing the Spectral Variation Hypothesis for Butterfly 

biodiversity estimation 

Also in this case we made use of the Rao’s Q index for the assessment of the 
Spectral Heterogeneity.  To ensure accurate data analysis, the procedure of 
correlating SH and butterfly diversity was consistently applied across each year 
studied. The data for each year were divided according to transect length. The 
initial step involved analyzing all 300 m long transects with a corresponding 300 
m buffer. This approach was systematically extended to longer transects in 
increments of 100 m, each time using a matching buffer size, up to transects of 
1000 m length, which were analyzed using a 1000 m buffer. 

 
 

3 Results 

3.0.1 Assessing Flower Cover as a Proxy for Bee Abundance using 
UAV Images 

RGB UAV images were leveraged to estimate flower cover, establishing 
positive correlations with field observations. Fig. 5 showcases the R2 values 
derived from linear regressions between flower cover, bee abundance, species 
richness, and Shannon’s H diversity, using different spatial resolutions (0.5cm, 
1cm, 2cm, 5cm) and machine learning methods. The visual representation in 
Fig. 6 exemplifies RF machine learning’s flower cover estimation at various  
spatial resolutions (0.5cm, 1cm, 2cm, 5cm) in a study area. Interestingly, the 
relationship’s accuracy varied with algorithm and spatial resolution.  SVM 
displayed a higher R2 at 1 cm than at 0.5 cm resolution, contrary to other 
algorithms. RF and NNET algorithms consistently yielded high R2 values, 
outperforming SVM. While SVM displayed lower performance, it still 
produced significant relations with field-estimated flower cover data. Accuracy 
ranged from a robust 0.8 for RF with a 0.5cm spatial resolution to 0.31 for 
SVM at 5cm resolution. The positive relationship extended to bee vari ables, 
with bee abundance, species richness, and diversity significantly and 
positively linked to flower cover estimated by RGB UAV images (Fig. 4b- 
c-d). Notably, RF and NNET algorithms consistently outperformed SVM, 
and the best models using RGB UAV estimates at 0.5cm spatial resolution 
exhibited higher goodness of fit than models relying on field observer data 
(Fig. 7). Specifically, the best relationships with flower cover estimated 
from UAV RGB had R2 values of 0.65, 0.62, and 0.54 for bee abundance, 
species richness, and diversity, respectively. Further examination of the 
relationship between flower cover estimated by in-situ observations and the 
best machine learning UAV model (RF 0.5cm) revealed a positive and 
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significant correlation with an R2 value of 0.8 (Fig. 8). This trend extended 
to the prediction of bee abundance, richness, and diversity, where RF models 
using RGB UAV estimates outperformed field observer data (Fig. 7). 
Assessing the performance of machine learning models across different spatial 
resolutions in estimating flower cover, Fig. 8 illustrates consistently high 
performance, except for the SVM model with RGB images at 5cm spatial 
resolution. In conclusion, the integration of RGB UAV images and machine 
learning algorithms proved effective in estimating flower cover and predicting 
its positive correlations with bee abundance, species richness, and diversity. 
Notably, RF and NNET algorithms demonstrated robust performance, sur- 
passing traditional field observations in predicting ecological variables. The 
findings highlight the potential of remote sensing technologies for ecological 
studies and underscore the importance of spatial resolution in accurately 
capturing complex ecological dynamics. 

 

Figure 5: R2 values derived from the linear regression between the field 
data (flower cover, bee abundance, bee species richness and bee Shannon’s H 
diversity) and the flower cover estimated by RGB UAV images at different 
spatial resolution (0.5cm, 1cm, 2cm, 5cm) using different machine learning 
methods. Green dots show statistically significant (p<0.05) correlations. 
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Figure 6: A visualisation of the results of the flower cover estimation by the 
RF machine learning methods at the different spatial resolution in one of 
the 30 study sites. The background image for the four sub-plots is at 0.5cm 
resolution. 
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Figure 7: The comparison of the relationships between bee abundance, 
species richness and diversity (Shannon’s H) and the flower cover estimated  
by the in-situ observations (Flower cover observer cm2) and by the different 
machine learning models using RGB UAV images at the higher spatial reso- 
lution (0.5cm). 
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Figure 8: The relationship between the in-situ flower cover (Flower cover 
observer cm2) and the flower cover estimated by the best machine learning 
UAV model (RF 0.5cm). 
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Figure 9: Performance of the machine learning models (Sensitivity, Speci- 
ficity, Neg.Pred:VAlue, Pos Pred Value, Precision, Recall, Accuracy, Bal- 
anced Accuracy, F1, Kappa) at the different spatial resolution. 

 
3.0.2 Testing Vegetation Grassland Heterogeneity as a Proxy for 

Flower Diversity and Pollinator Diversity using UAV Data 

The correlation between flower diversity and HH calculated with various 
indices (Rao’s Q, CV, Berger-Parker, and Simpson’s D) from UAV 
photogrammetry at 10 cm, 25 cm, and 50 cm spatial resolutions is depicted 
in Figure10. Positive and significant correlations are observed, with the 
highest R2 values associated with the Rao’s Q index, ranging from 0.41 (10 cm 
resolution) to 0.44 (25 cm resolution). Figure 11 displays the correlation 
between bee abundance and HH calculated using the same heterogeneity 
indices and spatial resolutions. Positive and significant correlations exist, 
particularly with Rao’s Q and Simpson’s D indices, though R2 values are 
generally lower compared to flower diversity correlations. The highest R2 
values occur when using the Rao’s Q index, ranging from 0.31 (25 cm 
resolution) to 0.34 (50 cm resolution). Lastly, Figure 12 illustrates the 
correlation between bee diversity and HH calculated with the specified indices 
and resolutions. Positive correlations persist, with the Rao’s Q index exhibiting 
the highest R2 values. The Simpson’s D index shows a comparatively modest 
correlation with HH. 
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These correlations are generally significant, except when calculated with the 
Berger-Parker index (at 10 cm and 50 cm CHM resolutions). In summary, the 
analysis reveals positive and significant correlations between flower diversity, 
bee abundance, and bee diversity with vegetation HH calculated using 
different indices and spatial resolutions, highlighting the importance of 
habitat structure in supporting biodiversity. 

 
 

Figure 10: Correlation between the ground-based flower diversity and the HH 
calculated with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker 
and Simpson’s D ) derived from UAV CHM at 10 cm, 25 cm and 50 cm 
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Figure 11: Correlation between ground-based bee abundance and HH 
calculated with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker, 
and Simpson’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm. 
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Figure 12: Correlation between ground-based bee diversity and HH calculated 
with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker, and 
Simpson’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm. 

 
3.0.3 Habitat Classification using Sentinel-2 Data for Linking 

Habitat Diversity with Pollinator Diversity 
In the ongoing exploration of various habitats, it is crucial to acknowledge 
the potential influence of confounding variables on the observed 
correlations. For instance, the analysis currently highlights a positive 
relationship between the extent of forested areas and both bee abundance 
and richness (Figure 14).  
It is important to consider the possibility that areas rich in forests may 
also host the most flower-rich grasslands, contributing to the observed 
correlations. Therefore, future investigations will delve into landscape 
metrics and leverage remote sensing data and techniques (e.g. habitat 
classification from  the Europe’s land-cover map) to effectively assess and 
account for potential confounding variables, ensuring a comprehensive 
understanding of the factors shaping bee communities in different 
habitats.
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Figure 13: The figure shows an example of the machine learning 
(Using the Random Forest Algorithms) based classification of the 
forest and agricultural habitats within one of the Dutch EBAs 
 

Figure 14: The figure shows the correlation between the area of forest 
areas (forest hedges, linear forests, small forests patches) derived 
from the machine learning classification using Sentinel-2 data and 
the bee richness and abun- dance in the Dutch EBAs. 

 
3.0.4 Testing the Spectral Variation Hypothesis for Butterfly 

biodiversity estimation 
Figure 15-17  show the linear regression between the spectral 
heterogeneity calculated through the Rao’s Q index on NDVI values 
derived from Sentinel-2 data for the three considered years.  
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Figure 15: The figure shows the linear regressions 

between the spectral heterogeneity (Rao’ s Q index) 
and the NSPP for the year 2018 for different 

buffers.  
 

 
Figure 16: The figure shows the linear regressions 

between the spectral heterogeneity (Rao’ s Q index) and 
the NSPP for the year 2019 for different buffers. 

 

Across the three figures, each depicting scatter plots for the years 2018, 
2019, and 2020 respectively, we observe the relationship between Rao's 
Q spectral heterogeneity and species richness (NSPP). Despite annual 
variations, a consistent trend across the years is the presence of some 
degree of positive correlation between spectral heterogeneity and NSPP, 
indicative of higher biodiversity in areas with greater spectral variation. 
Notably, the R² values fluctuate between years for corresponding 
transect lengths, suggesting a temporally dynamic  effect. P-values 
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associated with each plot reveal the statistical significance of these 
correlations, with many falling below the conventional significance 
threshold of 0.05, reinforcing the reliability of the observed trends. 
However, the significance does not uniformly translate across all transect 
lengths or years, hinting at complex ecological interactions. 

 
Figure 17: The figure shows the linear regressions 

between the spectral heterogeneity (Rao’ s Q index) and 
the NSPP for the year 2020 for different buffers. 

 

 
Figure 18: The figure shows the R2 derived from the  

linear regressions between the spectral heterogeneity 
(Rao’ s Q index) and the NSPP for the different years 
(2018, 2019 and 2020) for different buffers and for 

different seasons. 
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Figure 18 presents an insightful seasonal analysis of the correlation 
between spectral heterogeneity and NSPP over the course of three 
consecutive years. Each bar chart delineates the R² values for four 
distinct seasons, illustrating the ebb and flow of this relationship as 
influenced by the cyclical nature of ecological and phenological changes. 
It is evident that the strength of the correlation fluctuates with the 
seasons, which may be attributed to a myriad of factors, including 
vegetative growth patterns, seasonal climate variations, and other 
temporal ecological dynamics. The visualization of the R² value trends 
underscores significant seasonal impacts on spectral heterogeneity's 
predictive power regarding NSPP, a proxy for species richness.  

 
 

4 Discussion 

The utilization of remote sensing technologies, spanning from UAVs at the 
local scale to Sentinel-2 satellite data at the regional level, has emerged as 
a potent tool for advancing ecological studies, specifically in the domain of 
pollinator diversity within Dutch EBAs. Our multi-faceted approach 
encompasses various objectives, each shedding light on different facets of the 
intricate relationship between habitat characteristics and pollinator 
communities. At the local scale, the application of UAV optical data has 
proven particularly effective. In assessing flower cover as a proxy for bee 
abundance, our choice of RGB images coupled with machine learning 
algorithms such as Random Forest (RF), Support Vector Machine (SVM), 
and Neural Network (NNET), exhibited robust performance. The positive 
correlations observed between estimated flower cover and in-situ bee 
abundance, species richness, and diversity underscore the efficacy of this 
approach. Notably, RF and NNET algorithms outshone SVM, emphasizing 
the importance of algorithm selection. Furthermore, the exploration of 
different spatial resolutions (0.5cm, 1cm, 2cm, 5cm) revealed nuanced 
relationships, emphasizing the significance of spatial resolution in capturing 
ecological dynamics accurately. Similarly, in the second local-scale 
objective, the assessment of vegetation grassland heterogeneity as a proxy 
for flower and bee diversity, the use of UAV-derived data proved fruitful. The 
calculation of vegetation HH using CHMs (derived from Structure from 
Motion UAV optical data) at varying spatial resolutions (10 cm, 25 cm, 50 
cm) demonstrated positive correlations with both flower and bee diversity. 
Rao’s Q index consistently yielded the highest R2 values, highlighting its 
efficacy in capturing the nuanced rela tionships within the ecosystem. This 
outcome reinforces the pivotal role of habitat structure, as represented by 
vegetation heterogeneity, in supporting 
and influencing pollinator diversity. 

Moving to the regional scale, the application of Sentinel-2 satellite data 
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for habitat classification showcased promising results. Specifically, the 
classification of forested areas using the Random Forest algorithm exhibited a 
positive correlation with bee abundance and richness. The R2 values of 0.41 for 
bee abundance and 0.3 for richness underscore the significance of forested 
habitats in shaping bee communities. This machine learning-based 
classification approach provides a valuable tool for understanding the impact 
of different landscape elements on pollinator diversity within the broader con- 
text of EBAs. 

According to our findings, the application of the Spectral Variation 
Hypothesis  for estimating butterfly diversity at a regional scale seems 
ineffective. Despite thorough testing across various scales, buffer areas, 
and years, the hypothesis did not hold true in our study areas (within the 
whole Netherlands). One plausible explanation for this discrepancy could 
be the high level of human alteration in the landscape. The pronounced 
anthropogenic impact in the region may significantly influence spectral 
heterogeneity, thereby overshadowing the subtle spectral variations 
typically associated with butterfly biodiversity. Consequently, this human-
dominated landscape presents a challenge for the SVH, suggesting that the 
method's applicability may be limited in heavily modified environments 
where human influence is the predominant factor affecting habitat 
heterogeneity. 

In summary, our task integrates local and regional remote sensing data to 
unravel the intricate connections between habitat characteristics and 
pollinator diversity. The success of UAV optical data in estimating flower cover 
and assessing vegetation heterogeneity, coupled with the promising results 
from Sentinel-2 data in habitat classification, underscores the potential of 
remote sensing technologies in ecological research. On the other hand, the 
findings regarding the spectral variation hypothesis for butterfly diversity 
estimation yielded no positive outcomes. However, further analysis is 
necessary to refine our methodologies, consider additional environmental 
variables, and evaluate alternative hypotheses that may better capture the 
dynamics of butterfly populations. These efforts are essential for the 
advancement of remote sensing applications in biodiversity monitoring and 
contribute valuable insights that can inform conservation strategies and 
deepen our understanding of the complex interplay between habitats and 
pollinators in the project EBAs. 

 

5 Supplementary Information 

All the codes used to perform our analysis are stored in our public repository 

https://github.com/Ludovico-

Chieffallo/Deliverable_1.4_Showcase/tree/main 
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