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Abstract

The decline in global biodiversity, particularly in agricultural landscapes, poses a significant
threat to ecosystems and human well-being. Bees, essential pollinators, have experienced a
marked decline, impacting food security and ecosystem stability. To address the challenges of
large-scale bee surveying, we explore, through a multi-faceted, multi-scale approach the
relationship between habitat/landscape metrics de- rived from remote sensing information
and pollinator diversity within different Experimental Biodiversity Areas (EBAs) in The
Netherlands. At the local scale, we made use of UAV images to assess flower cover as a proxy
for bee abundance and test vegetation grassland het- erogeneity as a proxy for flower and bee
diversity. At the regional scale, we employed Sentinel-2 data for habitat classification to link
habitat diversity with pollinator diversity. Our results indicate that RGB UAV images, coupled
with machine learning algorithms like Random Forest and Neural Network, effectively
estimate flower cover, showing positive correlations with in-situ bee abundance, species
richness, and diversity. The choice of algorithm and spatial resolution plays a crucial role in
capturing accurate ecological dynamics. Additionally, UAV-derived data on vegetation height
heterogeneity, assessed through different indices and resolutions, exhibit positive correlations
with flower and bee diversity, emphasizing the importance of habitat structure. At the regional
scale, the Random Forest classification of forested areas using Sentinel-2 data reveals
significant positive correlations with bee abundance and richness. This highlights the
influence of forested habitats on shaping bee communities within EBAs. In summary, our task
underscores how remote sensing technologies can propel ecological research forward,
unraveling the intricate connections between habitat features and pollinator diversity. The
fusion of local and regional data not only provides key insights into shaping conservation
strategies but also enriches our comprehension of the intricate dynamics within the project
EBAs. On a broader scale, our results aid in biodiversity assessment assisting stakeholders,
(e.g., ecologists and farmers) for a better understand of biodiversity and ecological processes.



1 Introduction

The decline of global biodiversity poses a critical threat to both ecosystems
and human well-being, with agricultural landscapes experiencing a
particularly drastic reduction in biodiversity over the past decades [11, 23].
This decline, driven by factors like habitat fragmentation and intensified
farming practices, has far-reaching consequences on ecosystem functioning
[14]. Among the myriad species affected, bees, vital pollinators, have faced a
marked decline in distribution, abundance, and richness at both national and
local scales [30, 2]. This decline is attributed to habitat loss, fragmentation,
climate change, and the loss of host plants [25]. Bees, in providing essential
pollination services, play a pivotal role in the productivity of global food crops
and the seed set of wild plants [12, 18]. This ecosystem service contributes
significantly to worldwide food production, valued at over 150 billion euros
annually [5, 6]. The decline of bee populations thus has profound implications
for food security, biodiversity, and ecosystem stability. While mitigation
measures and drivers of bee decline are increasingly understood, the actual
extent of this decline, especially at large spatial scales, remains inadequately
explored. Large-scale surveying of bees faces challenges due to the difficulty in
species identification, making it less feasible for laypersons compared to
standardized monitoring of butterflies [28]. Consequently, trends in bee
abundance are often based on small-scale studies, underestimating population
trends [2]. Standardized monitoring proposals in EU member states aim to
address this gap [20]. However, due to the cost and coverage limitations of in-
situ monitoring, there is a need for complementary approaches. One such
approach involves inferring trends in bee pollinators from trends in flower
cover and species richness.

Recent advancements in remote sensing and Earth observation offer
promising avenues for large-scale biodiversity estimation [27, 22]. Satellite
remote sensing (SRS) provides extensive coverage, ecological information for
biodiversity estimation at broad scales [3], while Unmanned Aerial Vehicles
(UAVs) equipped with optical cameras have emerged as a cost-effective
solution for ecological purposes such as in the estimation of vegetation
properties, species distribution, and invasive species mapping [7, 10, 1] at a
local scale.

In this context, our task employs a multi-faceted and multi-scale approach,
integrating data from diverse remote sensing platforms to advance our
understanding of biodiversity indicators for pollinator diversity. Specifically,
we leverage the potential of remote sensing data at different scales, including
UAV optical data for local assessments and Sentinel-2 data for regional
analysis in order to assess biodiversity indicators for pollinator diversity
within the Dutch Experimental Biodiversity Areas (EBAs).



These are the objectives of our task computed at different scales using different
remote sensing data:

« Local scale: assessing flower cover as a proxy for bee abundance using
UAYV images. In the first phase of our task, we focus on assessing flower
cover as a proxy for bee abundance. The fundamental step involves
utilizing images from a UAV and distinguishing flower pixels from non-
floral surfaces through differences in spectral signatures [8]. We opted for
RGB images, given their cost-effectiveness, ready availability, and user-
friendly nature. RGB cameras, often integrated into commercial drones,
provide a practical and easily reproducible approach for ecological
classification analysis.

« Local scale: testing vegetation grassland heterogeneity as a proxy for
flower diversity and pollinator diversity using UAV data. In this second
stage, we aim to explore whether vegetation grassland heterogeneity,
assessed through optical RGB images and based on structure from
motion analysis, can serve as a proxy for flower diversity and,
consequently, bee diversity and abundance.

* Regional scale: Habitat Classification using Sentinel-2 Data for Linking
Habitat Diversity with Pollinator Diversity. The third objective involves
utilizing satellite images, specifically from Sentinel-2 data, to classify
different habitats (forest, agricultural areas, rivers, ponds, hedges). The
goal is to establish connections between habitat diversity and pollinator
diversity. This approach allows for a broader-scale analysis, providing
valuable insights into the relationship between different landscapes and
the presence of pollinators.

» Regional scale: we aim to evaluate the Spectral Variation Hypothesis for
estimating butterfly biodiversity through Sentinel-2 satellite data. This
concept hypothesizes that variability in reflectance known as spectral
heterogeneity (SH) or “spectral variability” of an area is an expression of
spatial ecosystem heterogeneity and therefore related to species diversity.
The fourth goal involves identifying a potential link between spectral
diversity—quantified by the Rao’s Q heterogeneity index from Sentinel-2
imagery—and butterfly species richness, which is obtained from citizen
science data. This method facilitates an analysis on a wider scale, offering
significant insights into how environmental diversity influences butterfly
distribution.

In summary, this task aims to adopt a multi-faceted and multi-scale approach,
integrating data from diverse remote sensing platforms to advance our
understanding of biodiversity indicators for pollinator diversity. The subsequent
sections delve into the methodologies, results, and implications of each
objective, contributing to the broader field of ecological research.



2 Methods

2.1 Study area

2.1.1 Bee biodiversity
For the analysis related to bee biodiversity, we focused on an area that covered
approximately 70 km2, with elevations ranging from 70 to 171 meters above sea
level, situated in the southeast of the Netherlands near the village of Gulpen (Fig.
1). Thirty grasslands, selected to encompass a spectrum of land use intensities—
ranging from nutrient-poor, biodiversity-rich semi-natural grasslands to
intensively fertilized areas—were chosen to assess the proposed approach. The
deliberate selection of semi-natural, extensively utilized, and intensively
managed grasslands from diverse regions aims to minimize the spatial clustering
of distinct grassland types.

Valkenburg

276000.000 282000.000 288000.000

Figure 1: The study areas, situated in the Southeast of the Netherlands, are
depicted in the map. Yellow dots mark the locations of the 30 transects
within each study area (Basemap: Google Earth map as of August 2022).

2.1.2 Butterfly biodiversity
In the estimation of butterfly diversity, we focused on a bigger area,
namely the whole Netherlands. The butterfly biodiversity data were collected
within the European Butterfly Monitoring Scheme (eBMS), a citizen science
network initiated by Butterfly Conservation Europe in April 2016. Its purpose is
to consolidate data from various European country schemes into a unified
database. The management of this database is overseen by the Natural
Environment Research Council (operating through the Centre for Ecology and
Hydrology) to support research efforts.



Figure 2: The location of all the plots where the field data were collected

2.2 Field data
2.2.1 Bee data

Each grassland was systematically surveyed using a transect measuring 150 by 1
meter, subdivided into three sections of 50 meters each (Figure 3). The transects
were strategically positioned from the edge to the center of the grassland,
traversing elevational differences when present, to capture the heterogeneity
within the grassland. Distinctive plates, clearly visible in drone imagery, marked
the transects. To minimize the likelihood of sampling the same bee populations,
adjacent transects were predominantly separated by distances exceeding 500
meters (with a minimum separation of 435 meters). Studies have indicated that,
although large-bodied bees like bumblebees can forage at distances of a few
kilometers, their primary foraging range is within shorter distances
(approximately 250-550 meters). Smaller wild bees tend to forage even closer
[21]. Surveys of both bees and flowers were conducted along each transect.
Transect walks, a standard method for studying plant-pollinator associations
[29], were used to count wild bees and the honeybee (Apis mellifera). Two
observers consistently conducted the surveys, counting all bees within a meter in
front of them while walking along the transect for 15 minutes. This time
excluded any handling time for caught specimens. For bee identification,
specimens were either identified in the field using keys to the Dutch Apidae [4,
16, 17] or collected for later identification in the lab. Stereo-microscopes were
employed for identification, and expert consultation was sought when necessary.
The surveys were conducted between May 12th and May 31st, 2021, from 10 a.m.
to 5 p.m. under favorable weather conditions (dry, >50% sunny, and at least 15
8



degrees Celsius, with wind speed <2 Beaufort). The field-collected bee data were
utilized to derive plot-level metrics, including bee abundance (total observed bee
count), bee species richness (count of unique species), and Shannon’s H index
[19] as an indicator of bee diversity. Flower surveys, following the method of
Scheper et al. [24], were generally conducted on the same day as the bee surveys
or, for logistical reasons, one or two days before or after. The number of open
flowers of each species was recorded, and this information was used to calculate
flower cover per transect. The calculation involved multiplying counts with
species-specific estimates of flower size and summing over all observed
flowering plant species [24].

AV
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Figure 3: Fie
2.2.2 Butterfly data

The field data collected, essential for the final comparison, are: length of the
transect measured in meters (m), which includes only those transects of at least
300 m because the location of shorter transects might be inaccurate and short
transects are more prone to local bias; total species richness (Nspp) (from raw
data) and species richness of each monitoring scheme in a given climate region,
proportion of species on transect relative to species richness of the region
(Nspp). This standardized richness was used as an alternative richness variable.
Transects had variable lengths, from 300 to 1000m.



2.3 Remote Sensing Data

2.3.1 Assessing Flower Cover as a Proxy for Bee Abundance using
UAV Images

To achieve this goal at a local scale, we utilized UAV optical data. The UAV data
collection, conducted concurrently with the field data collection, utilized the
"DJI Matrice 210 RTK" UAV model equipped with the RGB Zenmuse X5 camera
(16.0 MP, 17.3 x 13.0 mm sensor) featuring an integrated RTK GPS (Figure 4).
Images were captured with an 80% overlapping rate to generate the final
orthomosaic, with UAV flights executed at an altitude of approximately 20
meters above ground level. Employing the Agisoft Metashape Professional
Edition software, a user-friendly workflow combining structure-from-motion
and stereo-matching algorithms facilitated image alignment, dense point cloud
assessment, digital elevation model (DEM) development, and orthomosaic
construction. Key stages included feature extraction, sparse 3D point cloud
creation, and automatic detection of Ground Control Points for precise
georeferencing. The orthomosaic, exported as a GeoTIFF with a higher spatial
resolution (around 0.5cm mean spatial resolution across 30 areas), played a
crucial role in estimating flower cover. Additionally, variations in spatial
resolution (1cm, 2cm, and 5cm) were explored to analyze their impact on flower
cover estimation.

2.3.2 Testing Vegetation Grassland Heterogeneity as a Proxy for
Flower Diversity and Pollinator Diversity using UAV Data

For this objective, conducted also at the local scale, the same UAV optical images of
the previous objective were used. Conversely, the Agisoft Metashape Professional
Edition software processed UAV images through three main stages: image alignment,
dense point cloud creation, and digital elevation model inference. The procedures
involved feature extraction, creating a sparse 3D point cloud, and automatically
detecting Ground Control Point features for precise georeferencing. The dense point
cloud, with a mean point density of 700 points/m2, was exported as a LAS file. Spatial
resolutions for the Digital Surface Model (DSM) were derived at 10 cm, 25 cm, and 50
cm using the "dsmtin" algorithm. This algorithm utilized Delaunay triangulation to
form a triangular irregular network (TIN), which was then rasterized to create the
DSM. The Digital Terrain Model (DTM) and Canopy Height Model (CHM) were
derived from the same point cloud, providing a comprehensive representation of
terrain and vegetation structure.
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Figure 4: UAV campaign in the Dutch EBA

2.3.3 Habitat Classification using Sentinel-2 Data for Linking
Habitat Diversity with Pollinator Diversity

For the third objective, Sentinel-2 2A images (radiometrically calibrated and
atmospherically corrected data, ensuring the accuracy of reflectance values),
acquired through the Copernicus program were used. The selection of Sentinel -2
data was driven by its higher spatial resolution (compared to, for example,
Landsat images), offering higher accuracy in our analysis. We focused on specific
bands with a 10-meter spatial resolution, including the red, blue, green, and near-
infrared (NIR) bands, to enhance spatial resolution for detailed habitat
classification. Utilizing the calibrated and corrected Sentinel-2 2A images, a
supervised classification approach was employed, leveraging machine learning
algorithms (Random Forest) to discern and categorize different habitats based on
their unique spectral signatures.
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2.3.4 Testing the Spectral Variation Hypothesis for Butterfly
biodiversity estimation

For this objective we tested the Spectral Variation Hypothesis for the estimation
of butterfly diversity. In particular we assessed the spectral heterogeneity
through the Rao’s Q heterogeneity index, based on NDVI data derived from the
Sentinel-2 images. Since our objective was to investigate the potential
correlation between field data and landscape heterogeneity for the years 2018,
2019, and 2020 we used different Sentinel-2 images. We tested two different
temporal approaches: one based on the use of a single image for the whole year
(mean NDVI value from April to September) and one based on the use of four
different images corresponding as the mean of the NDVI value for each season.

2.4 Analyses

2.4.1 Assessing Flower Cover as a Proxy for Bee Abundance using
UAV Images

In order to derive the information of flower cover from the UAV RGB images,
we applied three machine learning algorithms: Random Forest (RF), Support
Vector Machine (SVM), and Neural Network (NNET)—using the caret R
package [26].

Random Forest (RF) RF, based on decision trees, effectively classifies
flower cover using bootstrapped training subsets and a voting mechanism [15,

9l

Support Vector Machine (SVM) SVM, a supervised learning model,
classifies flower cover using a kernel function to separate classes in an N-
dimensional space [15].

Neural Network (NNET) NNET, mimicking the human brain, captures
relationships in data through connected processors [13]. Training and testing
data, randomly selected within polygons, underwent a 10-fold cross-validation
method. Performance metrics (Accuracy, Kappa, Precision, Sensitivity,
Specificity, Negative Predictive Value, Positive Predictive Value, Balanced
Accuracy, and F1) evaluated model validity and reliability. Successive
correlation analyses explored the relationships between UAV image flower
cover estimated with different machine learning methods at different spatial
resolutions and in-situ data (flower cover, bee abundance, species richness,
and diversity). This analysis informs the choice of algorithms and resolutions
in capturing these relationships.

12



2.4.2 Testing Vegetation Grassland Heterogeneity as a Proxy for
Flower Diversity and Pollinator Diversity using UAV Data

For the UAVs derived CHMs (at 10cm, 25cm and 50cm), the Vegetation
Height Heterogeneity (HH) was calculated using the following heterogeneity
indices.

Rao’s Q Index: Originally devised by Rao and later recommended by
Botta-Dukat for functional diversity in ecology, it was adapted as a hetero-
geneity index for remote sensing by Rocchini et al. The formula used is:

N
Q= Zi,jzl dij X pi X pj
where Q is Rao’s Q index, pr and pj represents relative abundance, and dj is
the distance between pixels ;and ;.

Coefficient of Variation (CV): Widely used in ecological studies, CV is
calculated as SD/x, where SD is the standard deviation, and x is the mean
of pixel values.

Berger-Parker Index: A measure of dominance, calculated as nmax/N,
where nmax is the abundance of the most dominant pixel and N is the total
abun- dance.

Simpson’s D Index: A diversity assessment measure applied to remote
sensing data, calculated as Yl , p? where D Is the Simpson index, n is the
total number of pixels , and piis the relative abundance of a pixel value. The
derived HH, calculated for each CHMs(at 10cm, 25cm, 50¢m) using each
heterogeneity indices was then correlated to vegetation species richness and
bee species richness / abundance.

2.4.3 Habitat Classification using Sentinel-2 Data for Linking
Habitat Diversity with Pollinator Diversity

For our third objective, we harnessed the potential of Sentinel-2 satellite
images. Our aim was to classify diverse habitats within a 250-meter buffer around
our central EBAs using a Random Forest classification approach. To train our
classification model, we drew distinct polygons within the 250- meter buffer,
representing four major classes: linear elements (e.g., linear forests, hedges),
forests, urban areas, and agricultural fields. The model was trained using these
polygons to recognize and classify the different land cover types. The classification
process utilized a RF algorithm, a robust and versatile machine learning approach.
This method leverages an ensemble of decision trees, each contributing to the final
classification through a voting mechanism. Post-classification, we correlated the
areas of each identified class with beediversity and abundance within each EBA.
This analysis aims to unveil potential relationships between habitat types and the
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diversity and abundance of bee populations, providing valuable insights into the
ecological dynamics of these areas.

2.4.4 Testing the Spectral Variation Hypothesis for Butterfly
biodiversity estimation

Also in this case we made use of the Rao’s Q index for the assessment of the
Spectral Heterogeneity. To ensure accurate data analysis, the procedure of
correlating SH and butterfly diversity was consistently applied across each year
studied. The data for each year were divided according to transect length. The
initial step involved analyzing all 300 m long transects with a corresponding 300
m buffer. This approach was systematically extended to longer transects in
increments of 100 m, each time using a matching buffer size, up to transects of
1000 m length, which were analyzed using a 1000 m buffer.

3 Results

3.0.1 Assessing Flower Cover as a Proxy for Bee Abundance using
UAYV Images

RGB UAV images were leveraged to estimate flower cover, establishing
positive correlations with field observations. Fig. 5 showcases the R2 values
derived from linear regressions between flower cover, bee abundance, species
richness, and Shannon’s H diversity, using different spatial resolutions (0.5cm,
1cm, 2c¢m, 5¢cm) and machine learning methods. The visual representation in
Fig. 6 exemplifies RF machine learning’s flower cover estimation at various
spatial resolutions (0.5cm, 1cm, 2cm, 5¢m) in a study area. Interestingly, the
relationship’s accuracy varied with algorithm and spatial resolution. SVM
displayed a higher R? at 1 cm than at 0.5 cm resolution, contrary to other
algorithms. RF and NNET algorithms consistently yielded high R2 values,
outperforming SVM. While SVM displayed lower performance, it still
produced significant relations with field-estimated flower cover data. Accuracy
ranged from a robust 0.8 for RF with a 0.5c¢m spatial resolution to 0.31 for
SVM at 5cm resolution. The positive relationship extended to bee variables,
with bee abundance, species richness, and diversity significantly and
positively linked to flower cover estimated by RGB UAV images (Fig. 4b-
c-d). Notably, RF and NNET algorithms consistently outperformed SVM,
and the best models using RGB UAV estimates at 0.5cm spatial resolution
exhibited higher goodness of fit than models relying on field observer data
(Fig. 7). Specifically, the best relationships with flower cover estimated
from UAV RGB had R2 values of 0.65, 0.62, and 0.54 for bee abundance,
species richness, and diversity, respectively. Further examination of the
relationship between flower cover estimated by in-situ observations and the
best machine learning UAV model (RF 0.5cm) revealed a positive and
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significant correlation with an R2value of 0.8 (Fig. 8). This trend extended
tothe prediction of bee abundance, richness, and diversity, where RF models
using RGB UAV estimates outperformed field observer data (Fig. 7).
Assessing the performance of machine learning models across different spatial
resolutions in estimating flower cover, Fig. 8 illustrates consistently high
performance, except for the SVM model with RGB images at 5cm spatial
resolution. In conclusion, the integration of RGB UAV images and machine
learning algorithms proved effective in estimating flower cover and predicting
its positive correlations with bee abundance, species richness, and diversity.
Notably, RF and NNET algorithms demonstrated robust performance, sur-
passing traditional field observations in predicting ecological variables. The
findings highlight the potential of remote sensing technologies for ecological
studies and underscore the importance of spatial resolution in accurately
capturing complex ecological dynamics.

R? flower cover operator {cmz) vs flower cover UAV (cmz) R? bee abundance (n) vs flower cover UAV (cmz)
L ] [} [ ] ] [] [] [] [] [] [] [] [] L] . L] L] L] L] L] L] [] L] L] L]
& F o F S S & W F F F
o L O L Q L model
o~ nnet
o 2 2 2 2 d
R” bee species richness (n) vs flower cover UAV (cm®) R* bee Shannon's H vs flower cover UAV (cm®) svm

® p<00s

e o e o ® o © & o o ® o e ® ¢ o ® e e © o e o o
B TN S N Y & o F S F S LS S
o7 v T o7 g i o - o7 v T

Used machine learing method and related UAV resolution

Figure 5: R*values derived from the linear regression between the field
data (flower cover, bee abundance, bee species richness and bee Shannon’s H
diversity) and the flower cover estimated by RGB UAV images at different
spatial resolution (0.5cm, 1cm, 2cm, 5cm) using different machine learning
methods. Green dots show statistically significant (p<0.05) correlations.
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Figure 6: A visualisation of the results of the flower cover estimation by the
RF machine learning methods at the different spatial resolution in one of

the 30 study sites. The background image for the four sub-plots is at 0.5cm
resolution.
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Figure 7: The comparison of the relationships between bee abundance,
species richness and diversity (Shannon’s H) and the flower cover estimated
by the in-situ observations (Flower cover observer cm?) and by the different
machine learning models using RGB UAV images at the higher spatial reso-
lution (0.5cm).
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Figure 8: The relationship between the in-situ flower cover (Flower cover

observer cm2) and the flower cover estimated by the best machine learning
UAV model (RF 0.5cm).
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Figure 9: Performance of the machine learning models (Sensitivity, Speci-
ficity, Neg.Pred:VAlue, Pos Pred Value, Precision, Recall, Accuracy, Bal-

anced Accuracy, F1, Kappa) at the different spatial resolution.

3.0.2 Testing Vegetation Grassland Heterogeneity as a Proxy for
Flower Diversity and Pollinator Diversity using UAV Data

The correlation between flower diversity and HH calculated with various
indices (Rao’s Q, CV, Berger-Parker, and Simpson’s D) from UAV
photogrammetry at 10 cm, 25 cm, and 50 cm spatial resolutions is depicted
in Figure10. Positive and significant correlations are observed, with the
highest R2values associated with the Rao’s Q index, ranging from 0.41 (10 cm
resolution) to 0.44 (25 cm resolution). Figure 11 displays the correlation
between bee abundance and HH calculated using the same heterogeneity
indices and spatial resolutions. Positive and significant correlations exist,
particularly with Rao’s Q and Simpson’s D indices, though R2 values are
generally lower compared to flower diversity correlations. The highest R2
values occur when using the Rao’s Q index, ranging from 0.31 (25 cm
resolution) to 0.34 (50 cm resolution).
correlation between bee diversity and HH calculated with the specified indices
and resolutions. Positive correlations persist, with the Rao’s Q index exhibiting
the highest R2 values. The Simpson’s D index shows a comparatively modest

correlation with HH.
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Lastly, Figure 12 illustrates the




These correlations are generally significant, except when calculated with the
Berger-Parker index (at 10 cm and 50 cm CHM resolutions). In summary, the
analysis reveals positive and significant correlations between flower diversity,
bee abundance, and bee diversity with vegetation HH calculated using
different indices and spatial resolutions, highlighting the importance of
habitat structure in supporting biodiversity.
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Figure 10: Correlation between the ground-based flower diversity and the HH
calculated with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker
and Simpson’s D ) derived from UAV CHM at 10 cm, 25 cm and 50 cm
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Figure 11: Correlation between ground-based bee abundance and HH
calculated with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker,
andSimpson’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm.
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Figure 12: Correlation between ground-based bee diversity and HH calculated
with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker, and
Simpson’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm.

3.0.3 Habitat Classification using Sentinel-2 Data for Linking
Habitat Diversity with Pollinator Diversity
In the ongoing exploration of various habitats, it is crucial to acknowledge
the potential influence of confounding variables on the observed
correlations. For instance, the analysis currently highlights a positive
relationship between the extent of forested areas and both bee abundance
and richness (Figure 14).
It is important to consider the possibility that areas rich in forests may
also host the most flower-rich grasslands, contributing to the observed
correlations. Therefore, future investigations will delve into landscape
metrics and leverage remote sensing data and techniques (e.g. habitat
classification from the Europe’s land-cover map) to effectively assess and
account for potential confounding variables, ensuring a comprehensive
understanding of the factors shaping bee communities in different
habitats.
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Figure 13: The figure shows an example of the machine learning
(Using the Random Forest Algorithms) based classification of the
forest and agriculturalhabitats within one of the Dutch EBAs

Bee abundance vs Area linear elements (250m) Bee Richness vs Area linear elements (250m)
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Figure 14: The figure shows the correlation between the area of forest
areas (forest hedges, linear forests, small forests patches) derived
from the machinelearning classification using Sentinel-2 data and
the bee richness and abun- dance in the Dutch EBAs.

3.0.4 Testing the Spectral Variation Hypothesis for Butterfly

biodiversity estimation
Figure 15-17 show the linear regression between the spectral
heterogeneity calculated through the Rao’s Q index on NDVI values
derived from Sentinel-2 data for the three considered years.
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Figure 15: The figure shows the linear regressions
between the spectral heterogeneity (Rao’ s Q index)
and the NSPP for the year 2018 for different
buffers.

2019 Rao’'s Q Spectral Heterogeneity vs Nspp
300m

20 R*<0.p=0854

R®=023,p=0005 , - .
| cee 2 ) =
5 IMIEE: o2 = .

10-
. i i i i 5 i i I i i
200 300 400 500 600 200 300 400 500 600
Rao's Q Rao's Q
500m 600m
g e, o
R°=011,p=0155 . -
G0
12-
200 300 400 500 200 300 400 500
Rao's Q Rao's Q
700m 800m
5 - 5 50 =2
5- R°=0.08,p=0.105 201 R=0.21‘p=0034
o ol 5
- 10-
200 400 600 200 300 400 500 600
Rao's Q Rao's Q
900m 1000m

300 400 500
Rao's Q

Figure 16: The figure shows the linear regressions

%0 0
Rao's Q

between the spectral heterogeneity (Rao’ s Q index) and

the NSPP for the year 2019 for different buffers.
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Across the three figures, each depicting scatter plots for the years 2018,
2019, and 2020 respectively, we observe the relationship between Rao's
Q spectral heterogeneity and species richness (NSPP). Despite annual
variations, a consistent trend across the years is the presence of some
degree of positive correlation between spectral heterogeneity and NSPP,
indicative of higher biodiversity in areas with greater spectral variation.
Notably, the R2 values fluctuate between years for corresponding

transect lengths, suggesting a temporally dynamic effect. P-values



associated with each plot reveal the statistical significance of these
correlations, with many falling below the conventional significance
threshold of 0.05, reinforcing the reliability of the observed trends.
However, the significance does not uniformly translate across all transect
lengths or years, hinting at complex ecological interactions.
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Figure 17: The figure shows the linear regressions
between the spectral heterogeneity (Rao’ s Q index) and
the NSPP for the year 2020 for different buffers.
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Figure 18: The figure shows the R2 derived from the
linear regressions between the spectral heterogeneity
(Rao’ s Q index) and the NSPP for the different years

(2018, 2019 and 2020) for different buffers and for

different seasons.
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Figure 18 presents an insightful seasonal analysis of the correlation
between spectral heterogeneity and NSPP over the course of three
consecutive years. Each bar chart delineates the R2 values for four
distinct seasons, illustrating the ebb and flow of this relationship as
influenced by the cyclical nature of ecological and phenological changes.
It is evident that the strength of the correlation fluctuates with the
seasons, which may be attributed to a myriad of factors, including
vegetative growth patterns, seasonal climate variations, and other
temporal ecological dynamics. The visualization of the R2 value trends
underscores significant seasonal impacts on spectral heterogeneity's
predictive power regarding NSPP, a proxy for species richness.

4 Discussion

The utilization of remote sensing technologies, spanning from UAVs at the
local scale to Sentinel-2 satellite data at the regional level, has emerged as
a potent tool for advancing ecological studies, specifically in the domain of
pollinator diversity within Dutch EBAs. Our multi-faceted approach
encompasses various objectives, each shedding light on different facets of the
intricate relationship between habitat characteristics and pollinator
communities. At the local scale, the application of UAV optical data has
proven particularly effective. In assessing flower cover as a proxy for bee
abundance, our choice of RGB images coupled with machine learning
algorithms such as Random Forest (RF), Support Vector Machine (SVM),
and Neural Network (NNET), exhibited robust performance. The positive
correlations observed between estimated flower cover and in-situ bee
abundance, speciesrichness, and diversity underscore the efficacy of this
approach. Notably, RFand NNET algorithms outshone SVM, emphasizing
the importance of algorithm selection. Furthermore, the exploration of
different spatial resolutions(o.5cm, 1cm, 2cm, 5cm) revealed nuanced
relationships, emphasizing thesignificance of spatial resolution in capturing
ecological dynamics accurately. Similarly, in the second local-scale
objective, the assessment of vegetation grassland heterogeneity as a proxy
for flower and bee diversity, the useof UAV-derived data proved fruitful. The
calculation of vegetation HH usingCHMs (derived from Structure from
Motion UAV optical data) at varyingspatial resolutions (10 cm, 25 cm, 50
cm) demonstrated positive correlationswith both flower and bee diversity.
Rao’s Q index consistently yielded thehighest R2 values, highlighting its
efficacy in capturing the nuanced relationships within the ecosystem. This
outcome reinforces the pivotal role ofhabitat structure, as represented by
vegetation heterogeneity, in supporting
and influencing pollinator diversity.

Moving to the regional scale, the application of Sentinel-2 satellite data
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for habitat classification showcased promising results. Specifically, the
classification of forested areas using the Random Forest algorithm exhibited a
positive correlation with bee abundance and richness. The R2 values of 0.41 for
bee abundance and 0.3 for richness underscore the significance of forested
habitats in shaping bee communities. This machine learning-based
classification approach provides a valuable tool for understanding the impact
of different landscape elements on pollinator diversity within the broader con-
text of EBAs.

According to our findings, the application of the Spectral Variation
Hypothesis for estimating butterfly diversity at a regional scale seems
ineffective. Despite thorough testing across various scales, buffer areas,
and years, the hypothesis did not hold true in our study areas (within the
whole Netherlands). One plausible explanation for this discrepancy could
be the high level of human alteration in the landscape. The pronounced
anthropogenic impact in the region may significantly influence spectral
heterogeneity, thereby overshadowing the subtle spectral variations
typically associated with butterfly biodiversity. Consequently, this human-
dominated landscape presents a challenge for the SVH, suggesting that the
method's applicability may be limited in heavily modified environments
where human influence is the predominant factor affecting habitat
heterogeneity.

In summary, our task integrates local and regional remote sensing data to
unravel the intricate connections between habitat characteristics and
pollinator diversity. The success of UAV optical data in estimating flower cover
and assessing vegetation heterogeneity, coupled with the promising results
from Sentinel-2 data in habitat classification, underscores the potential of
remote sensing technologies in ecological research. On the other hand, the
findings regarding the spectral variation hypothesis for butterfly diversity
estimation yielded no positive outcomes. However, further analysis is
necessary to refine our methodologies, consider additional environmental
variables, and evaluate alternative hypotheses that may better capture the
dynamics of butterfly populations. These efforts are essential for the
advancement of remote sensing applications in biodiversity monitoring and
contribute valuable insights that can inform conservation strategies and
deepen our understanding of the complex interplay between habitats and
pollinators in the project EBAs.

5 Supplementary Information

All the codes used to perform our analysis are stored in our public repository
https://github.com/Ludovico-
Chieffallo/Deliverable_1.4_Showcase/tree/main

27



References

1.

10.

11.

Alvarez-Taboada, F., Paredes, C., & Julidn-Pelaz, J. (2017). Mapping
of the invasive species hakea sericea using unmanned aerial vehicle
(UAV) and worldview-2 imagery and an object-oriented approach.
Remote Sensing, 9(9), 913.

. Biesmeijer, J. C., Roberts, S. P., Reemer, M., Ohlemuller, R., Edwards,

M., Peeters, T., Schaffers, A., Potts, S. G., Kleukers, R., Thomas, C., et
al. (2006). Parallel declines in pollinators and insect-pollinated plants
in Britain and the Netherlands. Science, 313(5785), 351-354.

Cruzan, M. B., Weinstein, B. G., Grasty, M. R., Kohrn, B. F.,
Hendrickson, E. C., Arredondo, T. M., & Thompson, P. G. (2016).
Small unmanned aerial vehicles (micro-UAVs, drones) in plant
ecology. Applications in Plant Sciences, 4(9), 1600041.

Falk, S., & Lewington, R. (2017). Veldgids bijen voor Nederland en
Vlaanderen.

Gallai, N., Salles, J.-M., Settele, J., & Vaissiere, B. E. (2009).
Economic valuation of the wvulnerability of world agriculture
confronted with pollinator decline. Ecological Economics, 68(3), 810-
821.

Gallmann, J., Schiipbach, B., Jacot, K., Albrecht, M., Winizki, J.,
Kirchgessner, N., & Aasen, H. (2021). Flower mapping in grasslands
with drones and deep learning. Frontiers in Plant Science, 12.

Guo, Q., Wu, F., Hu, T., Chen, L., Liu, J., Zhao, X., Gao, S., Pang, S.,
et al. (2016). Perspectives and prospects of unmanned aerial vehicle
in remote sensing monitoring of biodiversity. Biodiversity Science,
24(11), 1267-1278.

Hu, P., Chapman, S. C., & Zheng, B. (2021). Coupling of machine
learning methods to improve estimation of ground coverage from
unmanned aerial vehicle (UAV) imagery for high-throughput
phenotyping of crops. Functional Plant Biology, 48(8), 766-779.

Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree species
classification with random forest using very high spatial resolution 8-
band worldview-2 satellite data. Remote Sensing, 4(9), 2661-2693.

Kaneko, K., Nohara, S., et al. (2014). Review of effective vegetation
mapping using the UAV (unmanned aerial vehicle) method. Journal
of Geographic Information System, 6(06), 733.

Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L. G., Henry, M.,
Isaacs, R., Klein, A.-M., Kremen, C., M'gonigle, L. K., Rader, R., et al.
(2015). Delivery of crop pollination services is an insufficient
argument for wild pollinator conservation. Nature Communications,

6(1), 1-9.
28



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

Klein, A.-M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I.,
Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance
of pollinators in changing landscapes for world crops. Proceedings of
the Royal Society B: Biological Sciences, 274(1608), 303-313.

Kreig, J. A., Parish, E., & Jager, H. 1. (2021). Growing grasses in
unprofitable areas of US Midwest croplands could increase species
richness. Biological Conservation, 261, 109289.

Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination
from native bees at risk from agricultural intensification. Proceedings
of the National Academy of Sciences, 99(26), 16812-16816.

Nasiri, V., Darvishsefat, A. A., Arefi, H., Griess, V. C., Sadeghi, S. M.
M., & Borz, S. A. (2022). Modeling forest canopy cover: A synergistic
use of sentinel-2, aerial photogrammetry data, and machine learning.
Remote Sensing, 14(6), 1453.

Nieuwenhuijsen, H., & Peeters, T. (2015). Nederlandse bijen op naam
brengen. Deel 1. - Stichting Jeugdbondsuitgeverij, s Graveland.

Nieuwenhuijsen, H., Peeters, T., & Dijkshoorn, D. (2020).
Nederlandse bijen op naam brengen. Deel 2. - Stichting
Jeugdbondsuitgeverij, s Graveland.

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering
plants are pollinated by animals? Oikos, 120(3), 321—326.

Pielou, E. C. (1966). Shannon’s formula as a measure of specific
diversity: its use and misuse. The American Naturalist, 100(914),
463—465.

Potts, S., Dauber, J., Hochkirch, A., Oteman, B., Roy, D., Ahrne, K.,
Biesmeijer, K., Breeze, T., Carvell, C., Ferreira, C., et al. (2021).
Proposal for an EU pollinator monitoring scheme. Publications Office
of the European Union.

Redhead, J. W., Dreier, S., Bourke, A. F., Heard, M. S., Jordan, W. C.,
Sumner, S., Wang, J., & Carvell, C. (2016). Effects of habitat
composition and landscape structure on worker foraging distances of
five bumble bee species. Ecological Applications, 26(3), 726—739.

Rocchini, D., Thouverai, E., Marcantonio, M., Iannacito, M., Da Re,
D., Torresani, M., Bacaro, G., Bazzichetto, M., Bernardi, A., Foody, G.
M., et al. (2021). rasterdiv—an information theory tailored R package
for measuring ecosystem heterogeneity from space: To the origin and
back. Methods in Ecology and Evolution, 12(6), 1093—1102.

Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological
consequences of ecosystem fragmentation: a review. Conservation
Biology, 5(1), 18—32.

Scheper, J., Bommarco, R., Holzschuh, A., Potts, S. G., Riedinger, V.,
29



Roberts, S. P., Rundlof, M., Smith, H. G., Steffan-Dewenter, I.,
Wickens, J. B., et al. (2015). Local and landscape-level floral resources
explain effects of wildflower strips on wild bees across four European
countries. Journal of Applied Ecology, 52(5), 1165—1175.

25.Scheper, J., Reemer, M., van Kats, R., Ozinga, W. A,, van der Linden,
G. T., Schaminée, J. H., Siepel, H., & Kleijn, D. (2014). Museum
specimens reveal loss of pollen host plants as key factor driving wild
bee decline in the Netherlands. Proceedings of the National Academy

of Sciences, 111(49), 17552—17557.

26.Team, R. C. (2013, 2014). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria.

27. Torresani, M., Rocchini, D., Sonnenschein, R., Zebisch, M., Hauffe, H.
C., Heym, M., Pretzsch, H., & Tonon, G. (2020). Height variation
hypothesis: A new approach for estimating forest species diversity
with CHM LiDAR data. Ecological Indicators, 117, 106520.

28.Van Swaay, C. A., Nowicki, P., Settele, J., & Van Strien, A. J. (2008).
Butterfly monitoring in Europe: methods, applications and
perspectives. Biodiversity and Conservation, 17, 3455—3469.

29.Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, N.,
Petanidou, T., Potts, S. G., Roberts, S. P., Szentgyorgyi, H., Tscheulin,
T., et al. (2008). Measuring bee diversity in different European
habitats and biogeographical regions. Ecological Monographs, 78(4),
653—671.

30.Wratten, S. D., Gillespie, M., Decourtye, A., Mader, E., & Desneux, N.
(2012). Pollinator habitat enhancement: benefits to other ecosystem
services. Agriculture, Ecosystems & Environment, 159, 112—122.

30



